Suppr超能文献

发生数据的地理选择偏差会影响入侵性的水鳖分布模型的可转移性。

Geographic selection bias of occurrence data influences transferability of invasive Hydrilla verticillata distribution models.

机构信息

Environmental Change Initiative, University of Notre Dame Notre Dame, Indiana.

The Nature Conservancy South Bend, Indiana.

出版信息

Ecol Evol. 2014 Jun;4(12):2584-93. doi: 10.1002/ece3.1120. Epub 2014 May 26.

Abstract

Due to socioeconomic differences, the accuracy and extent of reporting on the occurrence of native species differs among countries, which can impact the performance of species distribution models. We assessed the importance of geographical biases in occurrence data on model performance using Hydrilla verticillata as a case study. We used Maxent to predict potential North American distribution of the aquatic invasive macrophyte based upon training data from its native range. We produced a model using all available native range occurrence data, then explored the change in model performance produced by omitting subsets of training data based on political boundaries. We also compared those results with models trained on data from which a random sample of occurrence data was omitted from across the native range. Although most models accurately predicted the occurrence of H. verticillata in North America (AUC > 0.7600), data omissions influenced model predictions. Omitting data based on political boundaries resulted in larger shifts in model accuracy than omitting randomly selected occurrence data. For well-documented species like H. verticillata, missing records from single countries or ecoregions may minimally influence model predictions, but for species with fewer documented occurrences or poorly understood ranges, geographic biases could misguide predictions. Regardless of focal species, we recommend that future species distribution modeling efforts begin with a reflection on potential spatial biases of available occurrence data. Improved biodiversity surveillance and reporting will provide benefit not only in invaded ranges but also within under-reported and unexplored native ranges.

摘要

由于社会经济差异,各国对本地物种发生情况的报告准确性和范围存在差异,这可能会影响物种分布模型的性能。我们以水鳖为例,评估了地理偏差在物种分布模型性能中的重要性。我们使用 Maxent 根据该水生入侵植物的原生范围的训练数据来预测其在北美的潜在分布。我们使用所有可用的原生范围出现数据生成了一个模型,然后探索了通过根据政治边界省略训练数据子集来产生模型性能变化。我们还将这些结果与基于从原生范围中随机抽样出现数据的模型进行了比较。尽管大多数模型准确预测了水鳖在北美的出现(AUC>0.7600),但数据省略会影响模型预测。根据政治边界省略数据导致的模型准确性变化大于随机选择出现数据的省略。对于像水鳖这样记录良好的物种,单个国家或生态区的缺失记录可能对模型预测的影响最小,但对于记录较少或范围理解较差的物种,地理偏差可能会误导预测。无论焦点物种如何,我们建议未来的物种分布模型研究从对可用出现数据的潜在空间偏差的反思开始。改进生物多样性监测和报告不仅在入侵地区,而且在报告不足和未探索的原生地区都将带来益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24b6/4203300/5afe2ec9b24e/ece30004-2584-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验