Suppr超能文献

使用多室集合模型作为空间分布生物物理平衡的研究工具:应用于海马伞部-腔隙/分子层(O-LM)细胞。

Using multi-compartment ensemble modeling as an investigative tool of spatially distributed biophysical balances: application to hippocampal oriens-lacunosum/moleculare (O-LM) cells.

作者信息

Sekulić Vladislav, Lawrence J Josh, Skinner Frances K

机构信息

Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.

NIH COBRE Center for Structural and Functional Neuroscience, University of Montana, Missoula, Montana, United States of America; Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, United States of America.

出版信息

PLoS One. 2014 Oct 31;9(10):e106567. doi: 10.1371/journal.pone.0106567. eCollection 2014.

Abstract

Multi-compartmental models of neurons provide insight into the complex, integrative properties of dendrites. Because it is not feasible to experimentally determine the exact density and kinetics of each channel type in every neuronal compartment, an essential goal in developing models is to help characterize these properties. To address biological variability inherent in a given neuronal type, there has been a shift away from using hand-tuned models towards using ensembles or populations of models. In collectively capturing a neuron's output, ensemble modeling approaches uncover important conductance balances that control neuronal dynamics. However, conductances are never entirely known for a given neuron class in terms of its types, densities, kinetics and distributions. Thus, any multi-compartment model will always be incomplete. In this work, our main goal is to use ensemble modeling as an investigative tool of a neuron's biophysical balances, where the cycling between experiment and model is a design criterion from the start. We consider oriens-lacunosum/moleculare (O-LM) interneurons, a prominent interneuron subtype that plays an essential gating role of information flow in hippocampus. O-LM cells express the hyperpolarization-activated current (Ih). Although dendritic Ih could have a major influence on the integrative properties of O-LM cells, the compartmental distribution of Ih on O-LM dendrites is not known. Using a high-performance computing cluster, we generated a database of models that included those with or without dendritic Ih. A range of conductance values for nine different conductance types were used, and different morphologies explored. Models were quantified and ranked based on minimal error compared to a dataset of O-LM cell electrophysiological properties. Co-regulatory balances between conductances were revealed, two of which were dependent on the presence of dendritic Ih. These findings inform future experiments that differentiate between somatic and dendritic Ih, thereby continuing a cycle between model and experiment.

摘要

神经元的多房室模型有助于深入了解树突的复杂整合特性。由于通过实验确定每个神经元房室中每种通道类型的确切密度和动力学并不可行,因此开发模型的一个重要目标是帮助表征这些特性。为了解决给定神经元类型中固有的生物学变异性,人们已从使用手动调整的模型转向使用模型集合或群体。在共同捕获神经元的输出时,集合建模方法揭示了控制神经元动力学的重要电导平衡。然而,就其类型、密度、动力学和分布而言,给定神经元类别的电导永远不可能完全已知。因此,任何多房室模型都将始终是不完整的。在这项工作中,我们的主要目标是使用集合建模作为研究神经元生物物理平衡的工具,从一开始实验与模型之间的循环就是一个设计标准。我们考虑了海马体中信息流动的重要门控作用的突出中间神经元亚型——梭形/分子层(O-LM)中间神经元。O-LM细胞表达超极化激活电流(Ih)。尽管树突Ih可能对O-LM细胞的整合特性有重大影响,但Ih在O-LM树突上的房室分布尚不清楚。我们使用高性能计算集群生成了一个模型数据库,其中包括有或没有树突Ih的模型。使用了九种不同电导类型的一系列电导值,并探索了不同的形态。根据与O-LM细胞电生理特性数据集相比的最小误差对模型进行量化和排名。揭示了电导之间的共同调节平衡,其中两个取决于树突Ih的存在。这些发现为未来区分体细胞Ih和树突Ih的实验提供了信息,从而延续了模型与实验之间的循环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5089/4215854/d3af886e4afd/pone.0106567.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验