Suppr超能文献

帕累托最优、经济有效性权衡和离子通道简并:改进单神经元群体建模。

Pareto optimality, economy-effectiveness trade-offs and ion channel degeneracy: improving population modelling for single neurons.

机构信息

ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany.

Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany.

出版信息

Open Biol. 2022 Jul;12(7):220073. doi: 10.1098/rsob.220073. Epub 2022 Jul 13.

Abstract

Neurons encounter unavoidable evolutionary trade-offs between multiple tasks. They must consume as little energy as possible while effectively fulfilling their functions. Cells displaying the best performance for such multi-task trade-offs are said to be Pareto optimal, with their ion channel configurations underpinning their functionality. Ion channel degeneracy, however, implies that multiple ion channel configurations can lead to functionally similar behaviour. Therefore, instead of a single model, neuroscientists often use populations of models with distinct combinations of ionic conductances. This approach is called population (database or ensemble) modelling. It remains unclear, which ion channel parameters in the vast population of functional models are more likely to be found in the brain. Here we argue that Pareto optimality can serve as a guiding principle for addressing this issue by helping to identify the subpopulations of conductance-based models that perform best for the trade-off between economy and functionality. In this way, the high-dimensional parameter space of neuronal models might be reduced to geometrically simple low-dimensional manifolds, potentially explaining experimentally observed ion channel correlations. Conversely, Pareto inference might also help deduce neuronal functions from high-dimensional Patch-seq data. In summary, Pareto optimality is a promising framework for improving population modelling of neurons and their circuits.

摘要

神经元在多项任务之间不可避免地会遇到进化权衡。它们必须尽可能地消耗最少的能量,同时有效地完成其功能。对于这种多任务权衡,表现出最佳性能的细胞被称为帕累托最优,其离子通道配置为其功能提供了基础。然而,离子通道简并性意味着多种离子通道配置可以导致功能相似的行为。因此,神经科学家通常不使用单个模型,而是使用具有不同离子电导组合的模型群体。这种方法称为群体(数据库或集合)建模。目前尚不清楚在功能模型的庞大群体中,哪些离子通道参数更有可能在大脑中找到。在这里,我们认为帕累托最优性可以作为一种指导原则,通过帮助确定在经济和功能之间的权衡中表现最佳的基于电导的模型的子群体,来解决这个问题。通过这种方式,神经元模型的高维参数空间可以简化为几何上简单的低维流形,从而潜在地解释实验观察到的离子通道相关性。相反,帕累托推断也可能有助于从高维 Patch-seq 数据中推断神经元功能。总之,帕累托最优性是改进神经元及其电路的群体建模的有前途的框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ac0/9277232/bc01d743ba15/rsob220073f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验