Suppr超能文献

心房患者衍生计算模型中纤维颤动转子的结构贡献。

Structural contributions to fibrillatory rotors in a patient-derived computational model of the atria.

机构信息

Department of Bioengineering, University of California San Diego, Mail Code 0412, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA.

Department of Physics, University of California San Diego, La Jolla, CA, USA Center for Theoretical Biological Physics, University of California San Diego, La Jolla, CA, USA.

出版信息

Europace. 2014 Nov;16 Suppl 4(Suppl 4):iv3-iv10. doi: 10.1093/europace/euu251.

Abstract

AIMS

The aim of this study was to investigate structural contributions to the maintenance of rotors in human atrial fibrillation (AF) and possible mechanisms of termination.

METHODS AND RESULTS

A three-dimensional human biatrial finite element model based on patient-derived computed tomography and arrhythmia observed at electrophysiology study was used to study AF. With normal physiological electrical conductivity and effective refractory periods (ERPs), wave break failed to sustain reentrant activity or electrical rotors. With depressed excitability, decreased conduction anisotropy, and shorter ERP characteristic of AF, reentrant rotors were readily maintained. Rotors were transiently or permanently trapped by fibre discontinuities on the lateral wall of the right atrium near the tricuspid valve orifice and adjacent to the crista terminalis, both known sites of right atrial arrhythmias. Modelling inexcitable regions near the rotor tip to simulate fibrosis anchored the rotors, converting the arrhythmia to macro-reentry. Accordingly, increasing the spatial core of inexcitable tissue decreased the frequency of rotation, widened the excitable gap, and enabled an external wave to impinge on the rotor core and displace the source.

CONCLUSION

These model findings highlight the importance of structural features in rotor dynamics and suggest that regions of fibrosis may anchor fibrillatory rotors. Increasing extent of fibrosis and scar may eventually convert fibrillation to excitable gap reentry. Such macro-reentry can then be eliminated by extending the obstacle or by external stimuli that penetrate the excitable gap.

摘要

目的

本研究旨在探讨人类心房颤动(AF)中转子维持的结构贡献以及终止的可能机制。

方法和结果

使用基于患者 CT 扫描和电生理研究中观察到的心律失常的三维人心房有限元模型来研究 AF。在正常生理电导率和有效不应期(ERP)下,波破裂未能维持折返活动或电转子。在兴奋性降低、传导各向异性降低和 ERP 缩短的情况下,很容易维持折返转子。转子在右心房侧壁靠近三尖瓣口和冠状窦末端的纤维不连续性处被暂时或永久捕获,这些都是右房心律失常的已知部位。在转子尖端附近模拟纤维化的无激活动区以固定转子,将心律失常转化为宏观折返。因此,增加无激活动区的空间核心会降低旋转频率、扩大可兴奋间隙,并使外部波撞击转子核心并使其源发生位移。

结论

这些模型研究结果强调了结构特征在转子动力学中的重要性,并表明纤维化区域可能会固定颤动转子。纤维化和瘢痕的范围增加最终可能将颤动转化为可兴奋间隙折返。然后可以通过延长障碍物或通过穿透可兴奋间隙的外部刺激来消除这种宏观折返。

相似文献

引用本文的文献

7
Forward-Solution Noninvasive Computational Arrhythmia Mapping: The VMAP Study.正向解无创性心律失常映射:VMAP 研究。
Circ Arrhythm Electrophysiol. 2022 Sep;15(9):e010857. doi: 10.1161/CIRCEP.122.010857. Epub 2022 Sep 7.

本文引用的文献

4
Drift laws for spiral waves on curved anisotropic surfaces.弯曲各向异性表面上螺旋波的漂移定律。
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jul;88(1):012908. doi: 10.1103/PhysRevE.88.012908. Epub 2013 Jul 19.
8
Rotors and the dynamics of cardiac fibrillation.转子和心脏纤维性颤动的动力学。
Circ Res. 2013 Mar 1;112(5):849-62. doi: 10.1161/CIRCRESAHA.111.300158.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验