Suppr超能文献

铜绿假单胞菌的耐药基因组与表型易感性的关系

The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility.

作者信息

Kos Veronica N, Déraspe Maxime, McLaughlin Robert E, Whiteaker James D, Roy Paul H, Alm Richard A, Corbeil Jacques, Gardner Humphrey

机构信息

Infection Innovative Medicines Unit, AstraZeneca R&D Boston, Waltham, Massachusetts, USA

Infectious Diseases Research Center, Laval University, Quebec, Quebec, Canada.

出版信息

Antimicrob Agents Chemother. 2015 Jan;59(1):427-36. doi: 10.1128/AAC.03954-14. Epub 2014 Nov 3.

Abstract

Many clinical isolates of Pseudomonas aeruginosa cause infections that are difficult to eradicate due to their resistance to a wide variety of antibiotics. Key genetic determinants of resistance were identified through genome sequences of 390 clinical isolates of P. aeruginosa, obtained from diverse geographic locations collected between 2003 and 2012 and were related to microbiological susceptibility data for meropenem, levofloxacin, and amikacin. β-Lactamases and integron cassette arrangements were enriched in the established multidrug-resistant lineages of sequence types ST111 (predominantly O12) and ST235 (O11). This study demonstrates the utility of next-generation sequencing (NGS) in defining relevant resistance elements and highlights the diversity of resistance determinants within P. aeruginosa. This information is valuable in furthering the design of diagnostics and therapeutics for the treatment of P. aeruginosa infections.

摘要

许多铜绿假单胞菌临床分离株会引发难以根除的感染,因为它们对多种抗生素具有耐药性。通过对390株铜绿假单胞菌临床分离株的基因组序列进行分析,确定了耐药性的关键遗传决定因素。这些分离株于2003年至2012年间从不同地理位置收集,并且与美罗培南、左氧氟沙星和阿米卡星的微生物药敏数据相关。β-内酰胺酶和整合子盒排列在序列类型ST111(主要为O12)和ST235(O11)的既定多重耐药谱系中富集。本研究证明了下一代测序(NGS)在确定相关耐药元件方面的实用性,并突出了铜绿假单胞菌耐药决定因素的多样性。这些信息对于进一步设计治疗铜绿假单胞菌感染的诊断方法和治疗手段具有重要价值。

相似文献

1
The resistome of Pseudomonas aeruginosa in relationship to phenotypic susceptibility.
Antimicrob Agents Chemother. 2015 Jan;59(1):427-36. doi: 10.1128/AAC.03954-14. Epub 2014 Nov 3.
3
Nationwide genome surveillance of carbapenem-resistant in Japan.
Antimicrob Agents Chemother. 2024 May 2;68(5):e0166923. doi: 10.1128/aac.01669-23. Epub 2024 Apr 2.
4
Infrequent finding of metallo-β-lactamase VIM-2 in carbapenem-resistant Pseudomonas aeruginosa strains from Croatia.
Antimicrob Agents Chemother. 2012 May;56(5):2746-9. doi: 10.1128/AAC.05212-11. Epub 2012 Feb 27.
5
Empirical monotherapy with meropenem or combination therapy: the microbiological point of view.
Eur J Clin Microbiol Infect Dis. 2016 Nov;35(11):1851-1855. doi: 10.1007/s10096-016-2737-2. Epub 2016 Aug 9.
6
Genomics and Susceptibility Profiles of Extensively Drug-Resistant Pseudomonas aeruginosa Isolates from Spain.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.01589-17. Print 2017 Nov.
8
Unexpected mechanisms of resistance in Dutch Pseudomonas aeruginosa isolates collected during 14 years of surveillance.
Int J Antimicrob Agents. 2018 Sep;52(3):407-410. doi: 10.1016/j.ijantimicag.2018.05.009. Epub 2018 May 15.
10
The Efficacy of Colistin Combined with Amikacin or Levofloxacin against Pseudomonas aeruginosa Biofilm Infection.
Microbiol Spectr. 2022 Oct 26;10(5):e0146822. doi: 10.1128/spectrum.01468-22. Epub 2022 Sep 14.

引用本文的文献

1
Avirulent T3SS-negative strains belonging to Clade 5 produce variable quantities of secondary metabolites.
Microlife. 2025 Aug 18;6:uqaf019. doi: 10.1093/femsml/uqaf019. eCollection 2025.
2
Genomic insights into five selected multidrug-resistant isolated from Sodwana Bay, South Africa.
Front Microbiol. 2025 Jul 2;16:1578578. doi: 10.3389/fmicb.2025.1578578. eCollection 2025.
3
Whole Genome Analysis of Ocular Pseudomonas aeruginosa Isolates Reveals Genetic Diversity.
Invest Ophthalmol Vis Sci. 2025 Jun 2;66(6):58. doi: 10.1167/iovs.66.6.58.
5
The fitness connection of antibiotic resistance.
Front Microbiol. 2025 Apr 10;16:1556656. doi: 10.3389/fmicb.2025.1556656. eCollection 2025.
9
Genotypic and phenotypic analyses of two distinct sets of urinary tract isolates.
J Med Microbiol. 2025 Feb;74(2). doi: 10.1099/jmm.0.001971.
10
Large-scale genomic analysis reveals significant role of insertion sequences in antimicrobial resistance of .
mBio. 2025 Mar 12;16(3):e0285224. doi: 10.1128/mbio.02852-24. Epub 2025 Feb 20.

本文引用的文献

2
Global dissemination of a multidrug resistant Escherichia coli clone.
Proc Natl Acad Sci U S A. 2014 Apr 15;111(15):5694-9. doi: 10.1073/pnas.1322678111. Epub 2014 Mar 31.
4
5
Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4988-93. doi: 10.1073/pnas.1321364111. Epub 2014 Mar 17.
10
Rapid bacterial whole-genome sequencing to enhance diagnostic and public health microbiology.
JAMA Intern Med. 2013 Aug 12;173(15):1397-404. doi: 10.1001/jamainternmed.2013.7734.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验