Suppr超能文献

纤维化形态对患者来源模型中折返性室性心动过速诱发性及模拟逼真度的影响。

Effects of fibrosis morphology on reentrant ventricular tachycardia inducibility and simulation fidelity in patient-derived models.

作者信息

Ringenberg Jordan, Deo Makarand, Filgueiras-Rama David, Pizarro Gonzalo, Ibañez Borja, Peinado Rafael, Merino José L, Berenfeld Omer, Devabhaktuni Vijay

机构信息

EECS Department, College of Engineering, University of Toledo, Toledo, OH, USA.

Department of Engineering, Norfolk State University, Norfolk, VA, USA.

出版信息

Clin Med Insights Cardiol. 2014 Sep 25;8(Suppl 1):1-13. doi: 10.4137/CMC.S15712. eCollection 2014.

Abstract

Myocardial fibrosis detected via delayed-enhanced magnetic resonance imaging (MRI) has been shown to be a strong indicator for ventricular tachycardia (VT) inducibility. However, little is known regarding how inducibility is affected by the details of the fibrosis extent, morphology, and border zone configuration. The objective of this article is to systematically study the arrhythmogenic effects of fibrosis geometry and extent, specifically on VT inducibility and maintenance. We present a set of methods for constructing patient-specific computational models of human ventricles using in vivo MRI data for patients suffering from hypertension, hypercholesterolemia, and chronic myocardial infarction. Additional synthesized models with morphologically varied extents of fibrosis and gray zone (GZ) distribution were derived to study the alterations in the arrhythmia induction and reentry patterns. Detailed electrophysiological simulations demonstrated that (1) VT morphology was highly dependent on the extent of fibrosis, which acts as a structural substrate, (2) reentry tended to be anchored to the fibrosis edges and showed transmural conduction of activations through narrow channels formed within fibrosis, and (3) increasing the extent of GZ within fibrosis tended to destabilize the structural reentry sites and aggravate the VT as compared to fibrotic regions of the same size and shape but with lower or no GZ. The approach and findings represent a significant step toward patient-specific cardiac modeling as a reliable tool for VT prediction and management of the patient. Sensitivities to approximation nuances in the modeling of structural pathology by image-based reconstruction techniques are also implicated.

摘要

通过延迟增强磁共振成像(MRI)检测到的心肌纤维化已被证明是室性心动过速(VT)诱发的有力指标。然而,关于纤维化程度、形态和边界区配置的细节如何影响诱发情况,人们知之甚少。本文的目的是系统地研究纤维化几何形状和程度的致心律失常作用,特别是对VT诱发和维持的影响。我们提出了一套使用体内MRI数据构建高血压、高胆固醇血症和慢性心肌梗死患者的人体心室特定计算模型的方法。还推导了具有形态学上不同纤维化程度和灰色区域(GZ)分布的额外合成模型,以研究心律失常诱发和折返模式的改变。详细的电生理模拟表明:(1)VT形态高度依赖于作为结构基质的纤维化程度;(2)折返倾向于锚定在纤维化边缘,并显示激活通过纤维化内形成的狭窄通道进行透壁传导;(3)与相同大小和形状但GZ较低或没有GZ的纤维化区域相比,纤维化内GZ范围的增加倾向于使结构折返部位不稳定并加重VT。该方法和研究结果代表了朝着将特定患者心脏建模作为VT预测和患者管理的可靠工具迈出的重要一步。还涉及基于图像的重建技术在结构病理学建模中对近似细微差别的敏感性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/405f/4210189/e18076f020ea/cmc-2014-001f1.jpg

相似文献

1
Effects of fibrosis morphology on reentrant ventricular tachycardia inducibility and simulation fidelity in patient-derived models.
Clin Med Insights Cardiol. 2014 Sep 25;8(Suppl 1):1-13. doi: 10.4137/CMC.S15712. eCollection 2014.
2
Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia.
Front Physiol. 2019 May 15;10:580. doi: 10.3389/fphys.2019.00580. eCollection 2019.
4
Tachycardia in post-infarction hearts: insights from 3D image-based ventricular models.
PLoS One. 2013 Jul 2;8(7):e68872. doi: 10.1371/journal.pone.0068872. Print 2013.
5
Fibrosis modeling choice affects morphology of ventricular arrhythmia in non-ischemic cardiomyopathy.
Front Physiol. 2024 Mar 18;15:1370795. doi: 10.3389/fphys.2024.1370795. eCollection 2024.
6
Optimal contrast-enhanced MRI image thresholding for accurate prediction of ventricular tachycardia using ex-vivo high resolution models.
Comput Biol Med. 2018 Nov 1;102:426-432. doi: 10.1016/j.compbiomed.2018.09.031. Epub 2018 Oct 3.
10
Ventricular arrhythmia risk prediction in repaired Tetralogy of Fallot using personalized computational cardiac models.
Heart Rhythm. 2020 Mar;17(3):408-414. doi: 10.1016/j.hrthm.2019.10.002. Epub 2019 Oct 4.

引用本文的文献

2
Computational modeling of cardiac electrophysiology and arrhythmogenesis: toward clinical translation.
Physiol Rev. 2024 Jul 1;104(3):1265-1333. doi: 10.1152/physrev.00017.2023. Epub 2023 Dec 28.
4
A smoothed boundary bidomain model for cardiac simulations in anatomically detailed geometries.
PLoS One. 2023 Jun 9;18(6):e0286577. doi: 10.1371/journal.pone.0286577. eCollection 2023.
5
Whole-heart ventricular arrhythmia modeling moving forward: Mechanistic insights and translational applications.
Biophys Rev (Melville). 2021 Sep;2(3). doi: 10.1063/5.0058050. Epub 2021 Sep 28.
6
Mechanisms of ventricular arrhythmias elicited by coexistence of multiple electrophysiological remodeling in ischemia: A simulation study.
PLoS Comput Biol. 2022 Apr 27;18(4):e1009388. doi: 10.1371/journal.pcbi.1009388. eCollection 2022 Apr.
8
Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia.
Front Physiol. 2019 May 15;10:580. doi: 10.3389/fphys.2019.00580. eCollection 2019.
9
Myocardial viability of the peri-infarct region measured by T1 mapping post manganese-enhanced MRI correlates with LV dysfunction.
Int J Cardiol. 2019 Apr 15;281:8-14. doi: 10.1016/j.ijcard.2019.01.101. Epub 2019 Jan 31.
10
Dynamical anchoring of distant arrhythmia sources by fibrotic regions via restructuring of the activation pattern.
PLoS Comput Biol. 2018 Dec 20;14(12):e1006637. doi: 10.1371/journal.pcbi.1006637. eCollection 2018 Dec.

本文引用的文献

1
Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI.
Comput Med Imaging Graph. 2014 Apr;38(3):190-201. doi: 10.1016/j.compmedimag.2013.12.011. Epub 2014 Jan 2.
2
Accurate reconstruction of 3D cardiac geometry from coarsely-sliced MRI.
Comput Methods Programs Biomed. 2014 Feb;113(2):483-93. doi: 10.1016/j.cmpb.2013.11.013. Epub 2013 Dec 3.
4
Cardiac MR for the assessment of myocardial viability.
Methodist Debakey Cardiovasc J. 2013 Jul-Sep;9(3):163-8. doi: 10.14797/mdcj-9-3-163.
5
Tachycardia in post-infarction hearts: insights from 3D image-based ventricular models.
PLoS One. 2013 Jul 2;8(7):e68872. doi: 10.1371/journal.pone.0068872. Print 2013.
7
Three-dimensional architecture of scar and conducting channels based on high resolution ce-CMR: insights for ventricular tachycardia ablation.
Circ Arrhythm Electrophysiol. 2013 Jun;6(3):528-37. doi: 10.1161/CIRCEP.113.000264. Epub 2013 May 17.
8
Cardiac MRI visualization for ventricular tachycardia ablation.
Int J Comput Assist Radiol Surg. 2012 Sep;7(5):753-67. doi: 10.1007/s11548-012-0776-4. Epub 2012 Jul 3.
9
Image-based estimation of ventricular fiber orientations for personalized modeling of cardiac electrophysiology.
IEEE Trans Med Imaging. 2012 May;31(5):1051-60. doi: 10.1109/TMI.2012.2184799. Epub 2012 Jan 18.
10
Myocardial segmentation of late gadolinium enhanced MR images by propagation of contours from cine MR images.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):428-35. doi: 10.1007/978-3-642-23626-6_53.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验