Myklebust Lena, Maleckar Mary M, Arevalo Hermenegild
Computational Physiology, Simula Research Laboratory, Oslo, Norway.
Front Physiol. 2024 Mar 18;15:1370795. doi: 10.3389/fphys.2024.1370795. eCollection 2024.
Patients with non-ischemic cardiomyopathy (NICM) are at risk for ventricular arrhythmias, but diagnosis and treatment planning remain a serious clinical challenge. Although computational modeling has provided valuable insight into arrhythmic mechanisms, the optimal method for simulating reentry in NICM patients with structural disease is unknown. Here, we compare the effects of fibrotic representation on both reentry initiation and reentry morphology in patient-specific cardiac models. We investigate models with heterogeneous networks of non-conducting structures (cleft models) and models where fibrosis is represented as a dense core with a surrounding border zone (non-cleft models). Using segmented cardiac magnetic resonance with late gadolinium enhancement (LGE) of five NICM patients, we created 185 3D ventricular electrophysiological models with different fibrotic representations (clefts, reduced conductivity and ionic remodeling). Reentry was induced by electrical pacing in 647 out of 3,145 simulations. Both cleft and non-cleft models can give rise to double-loop reentries meandering through fibrotic regions (Type 1-reentry). When accounting for fibrotic volume, the initiation sites of these reentries are associated with high local fibrotic density (mean LGE in cleft models: p 0.001, core volume in non-cleft models: = 0.018, negative binomial regression). In non-cleft models, Type 1-reentries required slow conduction in core tissue (non-clefts models) as opposed to total conduction block. Incorporating ionic remodeling in fibrotic regions can give rise to single- or double-loop rotors close to healthy-fibrotic interfaces (Type 2-reentry). Increasing the cleft density or core-to-border zone ratio in cleft and non-cleft models, respectively, leads to increased inducibility and a change in reentry morphology from Type 2 to Type 1. By demonstrating how fibrotic representation affects reentry morphology and location, our findings can aid model selection for simulating arrhythmogenesis in NICM.
非缺血性心肌病(NICM)患者存在室性心律失常风险,但诊断和治疗方案制定仍是严峻的临床挑战。尽管计算建模为心律失常机制提供了有价值的见解,但模拟患有结构性疾病的NICM患者折返的最佳方法尚不清楚。在此,我们比较纤维化表示对患者特异性心脏模型中折返起始和折返形态的影响。我们研究具有非传导结构异质网络的模型(裂隙模型)以及将纤维化表示为具有周围边界区的致密核心的模型(非裂隙模型)。使用五位NICM患者的分段心脏磁共振成像及延迟钆增强(LGE),我们创建了185个具有不同纤维化表示(裂隙、传导性降低和离子重塑)的三维心室电生理模型。在3145次模拟中的647次中通过电起搏诱发了折返。裂隙模型和非裂隙模型均可产生蜿蜒穿过纤维化区域的双环折返(1型折返)。考虑纤维化体积时,这些折返的起始部位与高局部纤维化密度相关(裂隙模型中的平均LGE:p = 0.001,非裂隙模型中的核心体积:p = 0.018,负二项回归)。在非裂隙模型中,1型折返需要核心组织(非裂隙模型)中的缓慢传导,而非完全传导阻滞。在纤维化区域纳入离子重塑可产生靠近健康 - 纤维化界面的单环或双环转子(2型折返)。分别增加裂隙模型中的裂隙密度或非裂隙模型中的核心与边界区比率会导致诱发性增加以及折返形态从2型变为1型。通过证明纤维化表示如何影响折返形态和位置,我们的研究结果有助于选择用于模拟NICM心律失常发生的模型。