Suppr超能文献

水合状态通过皮肤中的上皮钠通道(ENaC)调节钠通量和炎症途径。

Hydration status regulates sodium flux and inflammatory pathways through epithelial sodium channel (ENaC) in the skin.

机构信息

Laboratory for Wound Repair and Regenerative Medicine, Department of Surgery/Plastic Surgery Division, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.

出版信息

J Invest Dermatol. 2015 Mar;135(3):796-806. doi: 10.1038/jid.2014.477. Epub 2014 Nov 5.

Abstract

Although it is known that the inflammatory response that results from disruption of epithelial barrier function after injury results in excessive scarring, the upstream signals remain unknown. It has also been observed that epithelial disruption results in reduced hydration status and that the use of occlusive dressings that prevent water loss from wounds decreases scar formation. We hypothesized that hydration status changes sodium homeostasis and induces sodium flux in keratinocytes, which result in activation of pathways responsible for keratinocyte-fibroblast signaling and ultimately lead to activation of fibroblasts. Here, we demonstrate that perturbations in epithelial barrier function lead to increased sodium flux in keratinocytes. We identified that sodium flux in keratinocytes is mediated by epithelial sodium channels (ENaCs) and causes increased secretion of proinflammatory cytokines, which activate fibroblast via the cyclooxygenase 2 (COX-2)/prostaglandin E2 (PGE2) pathway. Similar changes in signal transduction and sodium flux occur by increased sodium concentration, which simulates reduced hydration, in the media in epithelial cultures or human ex vivo skin cultures. Blockade of ENaC, prostaglandin synthesis, or PGE2 receptors all reduce markers of fibroblast activation and collagen synthesis. In addition, employing a validated in vivo excessive scar model in the rabbit ear, we demonstrate that utilization of either an ENaC blocker or a COX-2 inhibitor results in a marked reduction in scarring. Other experiments demonstrate that the activation of COX-2 in response to increased sodium flux is mediated through the PIK3/Akt pathway. Our results indicate that ENaC responds to small changes in sodium concentration with inflammatory mediators and suggest that the ENaC pathway is a potential target for a strategy to prevent fibrosis.

摘要

虽然已知上皮屏障功能破坏后炎症反应导致过度瘢痕形成,但上游信号仍不清楚。还观察到上皮破坏导致水合状态降低,使用防止伤口水分流失的闭塞性敷料可减少瘢痕形成。我们假设水合状态变化会影响钠稳态,并诱导角质形成细胞中的钠通量,从而激活角质形成细胞和成纤维细胞信号转导途径,并最终导致成纤维细胞激活。在这里,我们证明上皮屏障功能的破坏会导致角质形成细胞中的钠通量增加。我们确定角质形成细胞中的钠通量是由上皮钠通道(ENaC)介导的,并导致促炎细胞因子的分泌增加,这些细胞因子通过环氧化酶 2(COX-2)/前列腺素 E2(PGE2)途径激活成纤维细胞。在培养的上皮细胞或人离体皮肤培养物中,通过增加细胞外液中钠浓度(模拟水合作用降低),也会发生类似的信号转导和钠通量变化。ENaC 阻断、前列腺素合成或 PGE2 受体阻断均可减少成纤维细胞激活和胶原合成的标志物。此外,在兔耳中使用经过验证的过度瘢痕形成体内模型,我们证明使用 ENaC 阻断剂或 COX-2 抑制剂均可显著减少瘢痕形成。其他实验表明,COX-2 对钠通量增加的激活是通过 PIK3/Akt 途径介导的。我们的结果表明,ENaC 对钠浓度的微小变化会产生炎症介质,并表明 ENaC 途径是预防纤维化的一种潜在策略的靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验