Suppr超能文献

尿素诱导β-连环蛋白中蛋白质解折叠的结构基础。

The structural basis of urea-induced protein unfolding in β-catenin.

作者信息

Wang Chao, Chen Zhongzhou, Hong Xia, Ning Fangkun, Liu Haolin, Zang Jianye, Yan Xiaoxue, Kemp Jennifer, Musselman Catherine A, Kutateladze Tatinna G, Zhao Rui, Jiang Chengyu, Zhang Gongyi

机构信息

The Integrated Department of Immunology, National Jewish Health, Denver, CO 80206, USA.

Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2014 Nov;70(Pt 11):2840-7. doi: 10.1107/S1399004714018094. Epub 2014 Oct 16.

Abstract

Although urea and guanidine hydrochloride are commonly used to denature proteins, the molecular underpinnings of this process have remained unclear for a century. To address this question, crystal structures of β-catenin were determined at various urea concentrations. These structures contained at least 105 unique positions that were occupied by urea molecules, each of which interacted with the protein primarily via hydrogen bonds. Hydrogen-bond competition experiments showed that the denaturing effects of urea were neutralized when polyethylene glycol was added to the solution. These data suggest that urea primarily causes proteins to unfold by competing and disrupting hydrogen bonds in proteins. Moreover, circular-dichroism spectra and nuclear magnetic resonance (NMR) analysis revealed that a similar mechanism caused protein denaturation in the absence of urea at pH levels greater than 12. Taken together, the results led to the conclusion that the disruption of hydrogen bonds is a general mechanism of unfolding induced by urea, high pH and potentially other denaturing agents such as guanidine hydrochloride. Traditionally, the disruption of hydrophobic interactions instead of hydrogen bonds has been thought to be the most important cause of protein denaturation.

摘要

尽管尿素和盐酸胍常用于使蛋白质变性,但这一过程的分子基础在一个世纪以来一直不清楚。为了解决这个问题,在不同尿素浓度下测定了β-连环蛋白的晶体结构。这些结构包含至少105个被尿素分子占据的独特位置,每个位置主要通过氢键与蛋白质相互作用。氢键竞争实验表明,当向溶液中添加聚乙二醇时,尿素的变性作用被中和。这些数据表明,尿素主要通过竞争和破坏蛋白质中的氢键导致蛋白质展开。此外,圆二色光谱和核磁共振(NMR)分析表明,在pH值大于12且不存在尿素的情况下,类似的机制会导致蛋白质变性。综合来看,这些结果得出结论:氢键的破坏是由尿素、高pH值以及可能的其他变性剂(如盐酸胍)诱导展开的普遍机制。传统上,人们认为疏水相互作用而非氢键的破坏是蛋白质变性的最重要原因。

相似文献

1
The structural basis of urea-induced protein unfolding in β-catenin.
Acta Crystallogr D Biol Crystallogr. 2014 Nov;70(Pt 11):2840-7. doi: 10.1107/S1399004714018094. Epub 2014 Oct 16.
3
Unfolding and refolding of bovine beta-lactoglobulin monitored by hydrogen exchange measurements.
J Mol Biol. 1999 Nov 5;293(4):953-69. doi: 10.1006/jmbi.1999.3191.
6
Molecular mechanism for the denaturation of proteins by urea.
Biochemistry. 2009 Aug 18;48(32):7608-13. doi: 10.1021/bi9007116.
9
Urea, but not guanidinium, destabilizes proteins by forming hydrogen bonds to the peptide group.
Proc Natl Acad Sci U S A. 2009 Feb 24;106(8):2595-600. doi: 10.1073/pnas.0812588106. Epub 2009 Feb 5.
10
Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16928-33. doi: 10.1073/pnas.0808427105. Epub 2008 Oct 28.

引用本文的文献

1
Cholesterol and Lipid Rafts in the Biogenesis of Amyloid-β Protein and Alzheimer's Disease.
Annu Rev Biophys. 2024 Jul;53(1):455-486. doi: 10.1146/annurev-biophys-062823-023436. Epub 2024 Jun 28.
2
Green Chemistry to Modify Functional Properties of Crambe Protein Isolate-Based Thermally Formed Films.
ACS Omega. 2023 May 31;8(23):20342-20351. doi: 10.1021/acsomega.3c00113. eCollection 2023 Jun 13.
4
Hydrogen bonds are a primary driving force for de novo protein folding.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):955-969. doi: 10.1107/S2059798317015303. Epub 2017 Nov 10.
5
Influence of chemical denaturants on the activity, fold and zinc status of anthrax lethal factor.
Biochem Biophys Rep. 2015 Mar 24;1:68-77. doi: 10.1016/j.bbrep.2015.03.004. eCollection 2015 May.

本文引用的文献

1
Methane clustering in explicit water: effect of urea on hydrophobic interactions.
Phys Chem Chem Phys. 2005 Jan 7;7(1):53-8. doi: 10.1039/b413167c.
2
Urea's action on hydrophobic interactions.
J Am Chem Soc. 2009 Feb 4;131(4):1535-41. doi: 10.1021/ja807887g.
3
Polar or apolar--the role of polarity for urea-induced protein denaturation.
PLoS Comput Biol. 2008 Nov;4(11):e1000221. doi: 10.1371/journal.pcbi.1000221. Epub 2008 Nov 14.
4
Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16928-33. doi: 10.1073/pnas.0808427105. Epub 2008 Oct 28.
6
Interaction of urea with amino acids: implications for urea-induced protein denaturation.
J Am Chem Soc. 2007 Dec 26;129(51):16126-31. doi: 10.1021/ja076216j. Epub 2007 Nov 30.
7
Anatomy of energetic changes accompanying urea-induced protein denaturation.
Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15317-22. doi: 10.1073/pnas.0706251104. Epub 2007 Sep 18.
9
Does urea denature hydrophobic interactions?
J Am Chem Soc. 2006 Apr 19;128(15):4948-9. doi: 10.1021/ja058600r.
10
On the Structure of Native, Denatured, and Coagulated Proteins.
Proc Natl Acad Sci U S A. 1936 Jul;22(7):439-47. doi: 10.1073/pnas.22.7.439.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验