Suppr超能文献

一种抗冻蛋白的抗毒力特性。

Antivirulence properties of an antifreeze protein.

作者信息

Heisig Martin, Abraham Nabil M, Liu Lei, Neelakanta Girish, Mattessich Sarah, Sultana Hameeda, Shang Zhengling, Ansari Juliana M, Killiam Charlotte, Walker Wendy, Cooley Lynn, Flavell Richard A, Agaisse Herve, Fikrig Erol

机构信息

Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.

Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.

出版信息

Cell Rep. 2014 Oct 23;9(2):417-24. doi: 10.1016/j.celrep.2014.09.034. Epub 2014 Oct 16.

Abstract

As microbial drug-resistance increases, there is a critical need for new classes of compounds to combat infectious diseases. The Ixodes scapularis tick antifreeze glycoprotein, IAFGP, functions as an antivirulence agent against diverse bacteria, including methicillin-resistant Staphylococcus aureus. Recombinant IAFGP and a peptide, P1, derived from this protein bind to microbes and alter biofilm formation. Transgenic iafgp-expressing flies and mice challenged with bacteria, as well as wild-type animals administered P1, were resistant to infection, septic shock, or biofilm development on implanted catheter tubing. These data show that an antifreeze protein facilitates host control of bacterial infections and suggest therapeutic strategies for countering pathogens.

摘要

随着微生物耐药性的增加,迫切需要新型化合物来对抗传染病。肩突硬蜱抗冻糖蛋白(IAFGP)可作为一种抗毒力剂,对抗包括耐甲氧西林金黄色葡萄球菌在内的多种细菌。重组IAFGP及其衍生肽P1可与微生物结合并改变生物膜的形成。用细菌攻击的转基因表达iafgp的果蝇和小鼠,以及给予P1的野生型动物,对植入导管上的感染、败血症休克或生物膜形成具有抗性。这些数据表明,一种抗冻蛋白有助于宿主控制细菌感染,并提出了对抗病原体的治疗策略。

相似文献

1
Antivirulence properties of an antifreeze protein.
Cell Rep. 2014 Oct 23;9(2):417-24. doi: 10.1016/j.celrep.2014.09.034. Epub 2014 Oct 16.
2
A Tick Antivirulence Protein Potentiates Antibiotics against Staphylococcus aureus.
Antimicrob Agents Chemother. 2017 Jun 27;61(7). doi: 10.1128/AAC.00113-17. Print 2017 Jul.
3
Expression of Ixodes scapularis antifreeze glycoprotein enhances cold tolerance in Drosophila melanogaster.
PLoS One. 2012;7(3):e33447. doi: 10.1371/journal.pone.0033447. Epub 2012 Mar 13.
4
Pathogen-mediated manipulation of arthropod microbiota to promote infection.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E781-E790. doi: 10.1073/pnas.1613422114. Epub 2017 Jan 17.
6
Vision for medicine: Staphylococcus aureus biofilm war and unlocking key's for anti-biofilm drug development.
Microb Pathog. 2018 Oct;123:339-347. doi: 10.1016/j.micpath.2018.07.002. Epub 2018 Jul 3.
7
Frostbite protection in mice expressing an antifreeze glycoprotein.
PLoS One. 2015 Feb 25;10(2):e0116562. doi: 10.1371/journal.pone.0116562. eCollection 2015.
8
A Compound Inhibits Biofilm Formation of Staphylococcus aureus from Streptomyces.
Biol Pharm Bull. 2015;38(6):889-92. doi: 10.1248/bpb.b15-00053.
9
A recombinant fungal defensin-like peptide-P2 combats multidrug-resistant Staphylococcus aureus and biofilms.
Appl Microbiol Biotechnol. 2019 Jul;103(13):5193-5213. doi: 10.1007/s00253-019-09785-0. Epub 2019 Apr 25.
10
Immunotargeting of Gram-Positive Pathogens a Cell Wall Binding Tick Antifreeze Protein.
J Med Chem. 2023 Jan 12;66(1):503-515. doi: 10.1021/acs.jmedchem.2c01464. Epub 2022 Dec 23.

引用本文的文献

1
Microcurvature Controllable Metal-Organic Framework Nanoagents Capable of Ice-Lattice Matching for Cellular Cryopreservation.
JACS Au. 2022 Dec 20;3(1):154-164. doi: 10.1021/jacsau.2c00562. eCollection 2023 Jan 23.
3
The Symbiotic Continuum Within Ticks: Opportunities for Disease Control.
Front Microbiol. 2022 Mar 17;13:854803. doi: 10.3389/fmicb.2022.854803. eCollection 2022.
5
Advances in the Study of the Tick Cattle Microbiota and the Influence on Vectorial Capacity.
Front Vet Sci. 2021 Aug 17;8:710352. doi: 10.3389/fvets.2021.710352. eCollection 2021.
6
Anti-Biofilm Molecules Targeting Functional Amyloids.
Antibiotics (Basel). 2021 Jun 29;10(7):795. doi: 10.3390/antibiotics10070795.
7
Host Response of Atlantic Salmon () Re-Inoculated with .
Microorganisms. 2021 May 5;9(5):993. doi: 10.3390/microorganisms9050993.
8
Grappling with the tick microbiome.
Trends Parasitol. 2021 Aug;37(8):722-733. doi: 10.1016/j.pt.2021.04.004. Epub 2021 May 4.
9
Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
Biomolecules. 2020 Dec 9;10(12):1649. doi: 10.3390/biom10121649.
10
IRF3 Signaling within the Mouse Stroma Influences Sepsis Pathogenesis.
J Immunol. 2021 Jan 15;206(2):398-409. doi: 10.4049/jimmunol.1900217. Epub 2020 Nov 25.

本文引用的文献

1
Targeting virulence: can we make evolution-proof drugs?
Nat Rev Microbiol. 2014 Apr;12(4):300-8. doi: 10.1038/nrmicro3232.
2
Molecular biology of freezing tolerance.
Compr Physiol. 2013 Jul;3(3):1283-308. doi: 10.1002/cphy.c130007.
3
Hibernation is associated with depression of T-cell independent humoral immune responses in the 13-lined ground squirrel.
Dev Comp Immunol. 2013 Mar;39(3):154-60. doi: 10.1016/j.dci.2012.11.004. Epub 2012 Nov 24.
4
Expression of Ixodes scapularis antifreeze glycoprotein enhances cold tolerance in Drosophila melanogaster.
PLoS One. 2012;7(3):e33447. doi: 10.1371/journal.pone.0033447. Epub 2012 Mar 13.
5
Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella.
J Anim Ecol. 2012 Mar;81(2):386-94. doi: 10.1111/j.1365-2656.2011.01920.x. Epub 2011 Oct 14.
6
Antifreeze glycoprotein agents: structural requirements for activity.
J Sci Food Agric. 2011 Nov;91(14):2507-10. doi: 10.1002/jsfa.4473. Epub 2011 Jul 1.
8
Design and synthesis of antifreeze glycoproteins and mimics.
Chembiochem. 2010 Dec 10;11(18):2489-98. doi: 10.1002/cbic.201000509.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验