Suppr超能文献

具有冰晶格匹配能力的微曲率可控金属有机框架纳米制剂用于细胞冷冻保存

Microcurvature Controllable Metal-Organic Framework Nanoagents Capable of Ice-Lattice Matching for Cellular Cryopreservation.

作者信息

Jeon Nayeong, Jeong In-Ho, Cho Eunyeong, Choi Ilhyung, Lee Jiyeon, Han Eun Hee, Lee Hee Jung, Lee Peter C W, Lee Eunji

机构信息

School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea.

Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul05505, Republic of Korea.

出版信息

JACS Au. 2022 Dec 20;3(1):154-164. doi: 10.1021/jacsau.2c00562. eCollection 2023 Jan 23.

Abstract

Ice-binding proteins (IBPs) produced by psychrophilic organisms to adapt for the survival of psychrophiles in subzero conditions have received illustrious interest as a cryopreservation agent required for cells and tissues to completely recover after freezing/thawing. Depressing water-freezing point and avoiding ice-crystal growth affect their activities which are closely related to the presence of ice crystal well-matched binding moiety. The interaction of IBPs with ice and water is critical in enhancing their freeze avoidance against cell or tissue damage. Metal-organic frameworks (MOFs) with a controllable lattice at the molecular level and a size at the nanometer scale can offer periodically ordered ice-binding sites by modifying organic linkers and controlling microcurvature at the ice surface. Herein, zirconium (Zr)-based MOF-801 nanoparticles (NPs) with good biocompatibility were used as a cryoprotectant that is well dispersed and colloidal-stable in an aqueous solution. The MOF NP size was precisely controlled, and 10, 35, 100, and 250 nm NPs were prepared. The specific IBPs-mimicking pendants (valine and threonine) were simply introduced into the MOF NP-surface through the acrylate-based functionalization to endow with hydrophilic and hydrophobic dualities. When small-sized MOF-801 NPs were attached to ice, they confined ice growth in high curvature between the adsorption sites because of the decreased radius of the convex area of the growth region, leading to highly enhanced ice recrystallization inhibition (IRI). Surface-functionalized MOF NPs could increase the number of anchored clathrate water molecules with hydrophilic/hydrophobic balance of the ice-binding moiety, effectively inhibiting ice growth. The MOF-801 NPs were biocompatible with various cell lines regardless of concentration or NP surface-functionalization, whereas the smaller-sized surface-functionalized NPs showed a good cell recovery rate after freezing/thawing by induction of IRI. This study provides a strategy for the fabrication of low-cost, high-volume antifreeze nanoagents that can extend useful applications to organ transplantation, cord blood storage, and vaccines/drugs.

摘要

嗜冷生物产生的冰结合蛋白(IBPs)可帮助嗜冷菌在零度以下条件下生存,作为一种冷冻保护剂,它能使细胞和组织在冻融后完全恢复,因此备受关注。降低水的冰点并避免冰晶生长会影响其活性,这与存在与冰晶匹配良好的结合部分密切相关。IBPs与冰和水的相互作用对于增强其避免细胞或组织损伤的冷冻保护能力至关重要。金属有机框架(MOFs)在分子水平上具有可控的晶格结构,尺寸在纳米尺度,通过修饰有机连接体并控制冰表面的微曲率,可以提供周期性有序的冰结合位点。在此,具有良好生物相容性的锆(Zr)基MOF-801纳米颗粒(NPs)被用作冷冻保护剂,它在水溶液中分散良好且具有胶体稳定性。精确控制了MOF NP的尺寸,并制备了10、35、100和250 nm的NPs。通过基于丙烯酸酯的功能化,将特定的模仿IBPs的侧基(缬氨酸和苏氨酸)简单地引入到MOF NP表面,赋予其亲水性和疏水性双重性质。当小尺寸的MOF-801 NPs附着在冰上时,由于生长区域凸面面积半径减小,它们将冰的生长限制在吸附位点之间的高曲率区域,从而导致冰重结晶抑制(IRI)显著增强。表面功能化的MOF NPs可以通过冰结合部分的亲水/疏水平衡增加锚定笼形水分子的数量,有效抑制冰的生长。无论浓度或NP表面功能化如何,MOF-801 NPs与各种细胞系都具有生物相容性,而较小尺寸的表面功能化NPs在冻融后通过诱导IRI显示出良好的细胞回收率。这项研究为制造低成本、大批量的抗冻纳米剂提供了一种策略,可将其应用扩展到器官移植、脐带血储存以及疫苗/药物领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65ba/9875254/ccad0e6e17fe/au2c00562_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验