Gheni Ghupurjan, Ogura Masahito, Iwasaki Masahiro, Yokoi Norihide, Minami Kohtaro, Nakayama Yasumune, Harada Kazuo, Hastoy Benoit, Wu Xichen, Takahashi Harumi, Kimura Kazushi, Matsubara Toshiya, Hoshikawa Ritsuko, Hatano Naoya, Sugawara Kenji, Shibasaki Tadao, Inagaki Nobuya, Bamba Takeshi, Mizoguchi Akira, Fukusaki Eiichiro, Rorsman Patrik, Seino Susumu
Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan; Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan.
Division of Molecular and Metabolic Medicine, Kobe University Graduate School of Medicine, Chuo-ku, Kobe 650-0017, Japan; Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan.
Cell Rep. 2014 Oct 23;9(2):661-73. doi: 10.1016/j.celrep.2014.09.030. Epub 2014 Oct 16.
Incretins, hormones released by the gut after meal ingestion, are essential for maintaining systemic glucose homeostasis by stimulating insulin secretion. The effect of incretins on insulin secretion occurs only at elevated glucose concentrations and is mediated by cAMP signaling, but the mechanism linking glucose metabolism and cAMP action in insulin secretion is unknown. We show here, using a metabolomics-based approach, that cytosolic glutamate derived from the malate-aspartate shuttle upon glucose stimulation underlies the stimulatory effect of incretins and that glutamate uptake into insulin granules mediated by cAMP/PKA signaling amplifies insulin release. Glutamate production is diminished in an incretin-unresponsive, insulin-secreting β cell line and pancreatic islets of animal models of human diabetes and obesity. Conversely, a membrane-permeable glutamate precursor restores amplification of insulin secretion in these models. Thus, cytosolic glutamate represents the elusive link between glucose metabolism and cAMP action in incretin-induced insulin secretion.
肠促胰岛素是进食后由肠道释放的激素,通过刺激胰岛素分泌对维持全身葡萄糖稳态至关重要。肠促胰岛素对胰岛素分泌的作用仅在葡萄糖浓度升高时发生,且由环磷酸腺苷(cAMP)信号传导介导,但葡萄糖代谢与胰岛素分泌中cAMP作用之间的联系机制尚不清楚。我们在此表明,使用基于代谢组学的方法,葡萄糖刺激下由苹果酸 - 天冬氨酸穿梭产生的胞质谷氨酸是肠促胰岛素刺激作用的基础,并且由cAMP/蛋白激酶A(PKA)信号传导介导的谷氨酸摄取到胰岛素颗粒中可放大胰岛素释放。在对肠促胰岛素无反应的胰岛素分泌β细胞系以及人类糖尿病和肥胖动物模型的胰岛中,谷氨酸生成减少。相反,一种可透过细胞膜的谷氨酸前体可恢复这些模型中胰岛素分泌的放大作用。因此,胞质谷氨酸代表了肠促胰岛素诱导的胰岛素分泌中葡萄糖代谢与cAMP作用之间难以捉摸的联系。