Murao Naoya, Yokoi Norihide, Honda Kohei, Han Guirong, Hayami Tomohide, Gheni Ghupurjan, Takahashi Harumi, Minami Kohtaro, Seino Susumu
Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
Kansai Electric Power Medical Research Institute, Kobe, Japan.
PLoS One. 2017 Nov 1;12(11):e0187213. doi: 10.1371/journal.pone.0187213. eCollection 2017.
Incretins (GLP-1 and GIP) potentiate insulin secretion through cAMP signaling in pancreatic β-cells in a glucose-dependent manner. We recently proposed a mechanistic model of incretin-induced insulin secretion (IIIS) that requires two critical processes: 1) generation of cytosolic glutamate through the malate-aspartate (MA) shuttle in glucose metabolism and 2) glutamate transport into insulin granules by cAMP signaling to promote insulin granule exocytosis. To directly prove the model, we have established and characterized CRISPR/Cas9-engineered clonal mouse β-cell lines deficient for the genes critical in these two processes: aspartate aminotransferase 1 (AST1, gene symbol Got1), a key enzyme in the MA shuttle, which generates cytosolic glutamate, and the vesicular glutamate transporters (VGLUT1, VGLUT2, and VGLUT3, gene symbol Slc17a7, Slc17a6, and Slc17a8, respectively), which participate in glutamate transport into secretory vesicles. Got1 knockout (KO) β-cell lines were defective in cytosolic glutamate production from glucose and showed impaired IIIS. Unexpectedly, different from the previous finding that global Slc17a7 KO mice exhibited impaired IIIS from pancreatic islets, β-cell specific Slc17a7 KO mice showed no significant impairment in IIIS, as assessed by pancreas perfusion experiment. Single Slc17a7 KO β-cell lines also retained IIIS, probably due to compensatory upregulation of Slc17a6. Interestingly, triple KO of Slc17a7, Slc17a6, and Slc17a8 diminished IIIS, which was rescued by exogenously introduced wild-type Slc17a7 or Slc17a6 genes. The present study provides direct evidence for the essential roles of AST1 and VGLUTs in β-cell glutamate signaling for IIIS and also shows the usefulness of the CRISPR/Cas9 system for studying β-cells by simultaneous disruption of multiple genes.
肠促胰岛素(胰高血糖素样肽-1和葡萄糖依赖性促胰岛素多肽)通过环磷酸腺苷(cAMP)信号通路,以葡萄糖依赖的方式增强胰腺β细胞中的胰岛素分泌。我们最近提出了一种肠促胰岛素诱导的胰岛素分泌(IIIS)机制模型,该模型需要两个关键过程:1)在葡萄糖代谢中通过苹果酸-天冬氨酸(MA)穿梭生成胞质谷氨酸;2)通过cAMP信号通路将谷氨酸转运到胰岛素颗粒中,以促进胰岛素颗粒胞吐作用。为了直接验证该模型,我们建立并鉴定了CRISPR/Cas9基因编辑的克隆小鼠β细胞系,这些细胞系缺乏这两个过程中的关键基因:天冬氨酸转氨酶1(AST1,基因符号Got1),它是MA穿梭中的关键酶,可生成胞质谷氨酸;以及囊泡谷氨酸转运体(VGLUT1、VGLUT2和VGLUT3,基因符号分别为Slc17a7、Slc17a6和Slc17a8),它们参与谷氨酸转运到分泌囊泡中。Got1基因敲除(KO)β细胞系在从葡萄糖生成胞质谷氨酸方面存在缺陷,并表现出IIIS受损。出乎意料的是,与之前发现的全身性Slc17a7基因敲除小鼠胰岛的IIIS受损不同,通过胰腺灌注实验评估,β细胞特异性Slc17a7基因敲除小鼠的IIIS没有显著受损。单个Slc17a7基因敲除β细胞系也保留了IIIS,这可能是由于Slc17a6的代偿性上调。有趣的是,Slc17a7、Slc17a6和Slc17a8的三联基因敲除降低了IIIS,而通过外源导入野生型Slc17a7或Slc17a6基因可使其恢复。本研究为AST1和VGLUTs在β细胞谷氨酸信号通路对IIIS的关键作用提供了直接证据,也展示了CRISPR/Cas9系统通过同时破坏多个基因来研究β细胞的实用性。