Mueller A H, Munier S
Department of Physics, Columbia University, New York, New York 10027, USA.
Centre de Physique Théorique, École Polytechnique, CNRS, Palaiseau, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):042143. doi: 10.1103/PhysRevE.90.042143. Epub 2014 Oct 30.
We propose a picture of the fluctuations in branching random walks, which leads to predictions for the distribution of a random variable that characterizes the position of the bulk of the particles. We also interpret the 1/sqrt[t] correction to the average position of the rightmost particle of a branching random walk for large times t≫1, computed by Ebert and Van Saarloos, as fluctuations on top of the mean-field approximation of this process with a Brunet-Derrida cutoff at the tip that simulates discreteness. Our analytical formulas successfully compare to numerical simulations of a particular model of a branching random walk.
我们提出了一个分支随机游走波动的图景,它可以对一个表征大量粒子位置的随机变量的分布进行预测。我们还将埃伯特(Ebert)和范·萨阿洛斯(Van Saarloos)计算得出的、对于长时间(t≫1)时分支随机游走最右侧粒子平均位置的(1/\sqrt{t})修正,解释为该过程平均场近似之上的波动,此平均场近似在尖端处有一个模拟离散性的布鲁内 - 德里达(Brunet - Derrida)截断。我们的解析公式与分支随机游走特定模型的数值模拟结果成功吻合。