Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France and Laboratoire de Physique Statistique, École Normale Supérieure, 24 Rue Lhomond, 75005 Paris, France.
Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
Phys Rev E. 2016 Apr;93:042139. doi: 10.1103/PhysRevE.93.042139. Epub 2016 Apr 29.
Consider a one-dimensional branching Brownian motion and rescale the coordinate and time so that the rates of branching and diffusion are both equal to 1. If X_{1}(t) is the position of the rightmost particle of the branching Brownian motion at time t, the empirical velocity c of this rightmost particle is defined as c=X_{1}(t)/t. Using the Fisher-Kolmogorov-Petrovsky-Piscounov equation, we evaluate the probability distribution P(c,t) of this empirical velocity c in the long-time t limit for c>2. It is already known that, for a single seed particle, P(c,t)∼exp[-(c^{2}/4-1)t] up to a prefactor that can depend on c and t. Here we show how to determine this prefactor. The result can be easily generalized to the case of multiple seed particles and to branching random walks associated with other traveling-wave equations.
考虑一维分支布朗运动,并对坐标和时间进行缩放,使得分支和扩散的速率都等于 1。如果$X_{1}(t)$是分支布朗运动中最右侧粒子在时间$t$时的位置,则此最右侧粒子的经验速度$c$定义为$c=X_{1}(t)/t$。使用 Fisher-Kolmogorov-Petrovsky-Piscounov 方程,我们在$c\gt2$的长时间$t$极限下评估此经验速度$c$的概率分布$P(c,t)$。已知,对于单个种子粒子,$P(c,t)\sim exp[-(c^{2}/4-1)t]$,其中前因子可以取决于$c$和$t$。本文展示如何确定此前因子。该结果可以轻松推广到多个种子粒子的情况以及与其他行波方程相关的分支随机游动的情况。