Madzvamuse A, Barreira R
School of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Pevensey III, 5C15, Falmer, Brigton, BN1 9QH, England, UK.
Escola Superior de Tecnologia do Barreiro/IPS, Rua Américo da Silva Marinho-Lavradio, 2839-001 Barreiro, Portugal.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Oct;90(4):043307. doi: 10.1103/PhysRevE.90.043307. Epub 2014 Oct 31.
The aim of this manuscript is to present for the first time the application of the finite element method for solving reaction-diffusion systems with cross-diffusion on continuously evolving domains and surfaces. Furthermore we present pattern formation generated by the reaction-diffusion system with cross-diffusion on evolving domains and surfaces. A two-component reaction-diffusion system with linear cross-diffusion in both u and v is presented. The finite element method is based on the approximation of the domain or surface by a triangulated domain or surface consisting of a union of triangles. For surfaces, the vertices of the triangulation lie on the continuous surface. A finite element space of functions is then defined by taking the continuous functions which are linear affine on each simplex of the triangulated domain or surface. To demonstrate the role of cross-diffusion to the theory of pattern formation, we compute patterns with model kinetic parameter values that belong only to the cross-diffusion parameter space; these do not belong to the standard parameter space for classical reaction-diffusion systems. Numerical results exhibited show the robustness, flexibility, versatility, and generality of our methodology; the methodology can deal with complicated evolution laws of the domain and surface, and these include uniform isotropic and anisotropic growth profiles as well as those profiles driven by chemical concentrations residing in the domain or on the surface.
本文的目的是首次展示有限元方法在求解具有交叉扩散的反应扩散系统时在连续演化的区域和曲面上的应用。此外,我们还展示了具有交叉扩散的反应扩散系统在演化的区域和曲面上产生的图案形成。提出了一个在u和v中都具有线性交叉扩散的双组分反应扩散系统。有限元方法基于用由三角形并集组成的三角剖分区域或曲面来近似区域或曲面。对于曲面,三角剖分的顶点位于连续曲面上。然后通过取在三角剖分区域或曲面的每个单形上为线性仿射的连续函数来定义一个函数的有限元空间。为了证明交叉扩散在图案形成理论中的作用,我们用仅属于交叉扩散参数空间的模型动力学参数值来计算图案;这些参数值不属于经典反应扩散系统的标准参数空间。所展示的数值结果表明了我们方法的稳健性、灵活性、通用性和一般性;该方法可以处理区域和曲面的复杂演化规律,这些规律包括均匀各向同性和各向异性生长轮廓以及由区域内或曲面上的化学浓度驱动的那些轮廓。