Madzvamuse Anotida, Ndakwo Hussaini S, Barreira Raquel
Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Pevensey III, 5C15, Brighton, BN1 9QH, UK,
J Math Biol. 2015 Mar;70(4):709-43. doi: 10.1007/s00285-014-0779-6. Epub 2014 Mar 27.
By introducing linear cross-diffusion for a two-component reaction-diffusion system with activator-depleted reaction kinetics (Gierer and Meinhardt, Kybernetik 12:30-39, 1972; Prigogine and Lefever, J Chem Phys 48:1695-1700, 1968; Schnakenberg, J Theor Biol 81:389-400, 1979), we derive cross-diffusion-driven instability conditions and show that they are a generalisation of the classical diffusion-driven instability conditions in the absence of cross-diffusion. Our most revealing result is that, in contrast to the classical reaction-diffusion systems without cross-diffusion, it is no longer necessary to enforce that one of the species diffuse much faster than the other. Furthermore, it is no longer necessary to have an activator-inhibitor mechanism as premises for pattern formation, activator-activator, inhibitor-inhibitor reaction kinetics as well as short-range inhibition and long-range activation all have the potential of giving rise to cross-diffusion-driven instability. To support our theoretical findings, we compute cross-diffusion induced parameter spaces and demonstrate similarities and differences to those obtained using standard reaction-diffusion theory. Finite element numerical simulations on planary square domains are presented to back-up theoretical predictions. For the numerical simulations presented, we choose parameter values from and outside the classical Turing diffusively-driven instability space; outside, these are chosen to belong to cross-diffusively-driven instability parameter spaces. Our numerical experiments validate our theoretical predictions that parameter spaces induced by cross-diffusion in both the [Formula: see text] and [Formula: see text] components of the reaction-diffusion system are substantially larger and different from those without cross-diffusion. Furthermore, the parameter spaces without cross-diffusion are sub-spaces of the cross-diffusion induced parameter spaces. Our results allow experimentalists to have a wider range of parameter spaces from which to select reaction kinetic parameter values that will give rise to spatial patterning in the presence of cross-diffusion.
通过为具有激活剂耗尽反应动力学的双组分反应扩散系统引入线性交叉扩散(吉勒尔和迈因哈特,《控制论》12:30 - 39,1972;普里戈金和勒费弗,《化学物理杂志》48:1695 - 1700,1968;施纳肯贝格,《理论生物学杂志》81:389 - 400,1979),我们推导了交叉扩散驱动的不稳定性条件,并表明它们是在没有交叉扩散情况下经典扩散驱动不稳定性条件的推广。我们最具启发性的结果是,与没有交叉扩散的经典反应扩散系统不同,不再需要强制一种物质的扩散速度比另一种物质快得多。此外,不再需要以激活剂 - 抑制剂机制作为图案形成的前提,激活剂 - 激活剂、抑制剂 - 抑制剂反应动力学以及短程抑制和长程激活都有可能导致交叉扩散驱动的不稳定性。为了支持我们的理论发现,我们计算了交叉扩散诱导的参数空间,并展示了与使用标准反应扩散理论获得的参数空间的异同。给出了在平面正方形区域上的有限元数值模拟以支持理论预测。对于所呈现的数值模拟,我们从经典图灵扩散驱动的不稳定性空间内和外选择参数值;在空间外,这些参数值被选择属于交叉扩散驱动的不稳定性参数空间。我们的数值实验验证了我们的理论预测,即反应扩散系统的[公式:见原文]和[公式:见原文]组分中由交叉扩散诱导的参数空间比没有交叉扩散时的参数空间大得多且不同。此外,没有交叉扩散的参数空间是交叉扩散诱导参数空间的子空间。我们的结果使实验人员能够有更广泛的参数空间可供选择,从中选择在存在交叉扩散时会产生空间图案的反应动力学参数值。