Ma Xin, Wang Haibo, Xue Bingxia, Zhou Mingang, Ji Bing, Li Yibin
IEEE J Biomed Health Inform. 2014 Nov;18(6):1915-22. doi: 10.1109/JBHI.2014.2304357.
Falls are one of the major causes leading to injury of elderly people. Using wearable devices for fall detection has a high cost and may cause inconvenience to the daily lives of the elderly. In this paper, we present an automated fall detection approach that requires only a low-cost depth camera. Our approach combines two computer vision techniques-shape-based fall characterization and a learning-based classifier to distinguish falls from other daily actions. Given a fall video clip, we extract curvature scale space (CSS) features of human silhouettes at each frame and represent the action by a bag of CSS words (BoCSS). Then, we utilize the extreme learning machine (ELM) classifier to identify the BoCSS representation of a fall from those of other actions. In order to eliminate the sensitivity of ELM to its hyperparameters, we present a variable-length particle swarm optimization algorithm to optimize the number of hidden neurons, corresponding input weights, and biases of ELM. Using a low-cost Kinect depth camera, we build an action dataset that consists of six types of actions (falling, bending, sitting, squatting, walking, and lying) from ten subjects. Experimenting with the dataset shows that our approach can achieve up to 91.15% sensitivity, 77.14% specificity, and 86.83% accuracy. On a public dataset, our approach performs comparably to state-of-the-art fall detection methods that need multiple cameras.
跌倒事故是导致老年人受伤的主要原因之一。使用可穿戴设备进行跌倒检测成本高昂,且可能给老年人的日常生活带来不便。在本文中,我们提出了一种自动跌倒检测方法,该方法仅需使用低成本的深度相机。我们的方法结合了两种计算机视觉技术——基于形状的跌倒特征提取和基于学习的分类器,以将跌倒与其他日常活动区分开来。对于给定的跌倒视频片段,我们提取每一帧人体轮廓的曲率尺度空间(CSS)特征,并用一袋CSS词(BoCSS)来表示该动作。然后,我们利用极限学习机(ELM)分类器从其他动作的BoCSS表示中识别出跌倒的BoCSS表示。为了消除ELM对其超参数的敏感性,我们提出了一种可变长度粒子群优化算法,以优化ELM的隐藏神经元数量、相应的输入权重和偏差。我们使用低成本的Kinect深度相机,构建了一个包含来自十名受试者的六种动作(跌倒、弯腰、坐下、蹲下、行走和躺下)的动作数据集。对该数据集进行实验表明,我们的方法可实现高达91.15%的灵敏度、77.14%的特异性和86.83%的准确率。在一个公共数据集上,我们的方法与需要多台相机的现有最先进跌倒检测方法表现相当。