Suppr超能文献

基于家用摄像头的老年人跌倒检测系统。

Home Camera-Based Fall Detection System for the Elderly.

机构信息

Centre for Automation and Robotics (CAR UPM-CSIC), Universidad Politécnica de Madrid, Madrid, Spain.

出版信息

Sensors (Basel). 2017 Dec 9;17(12):2864. doi: 10.3390/s17122864.

Abstract

Falls are the leading cause of injury and death in elderly individuals. Unfortunately, fall detectors are typically based on wearable devices, and the elderly often forget to wear them. In addition, fall detectors based on artificial vision are not yet available on the market. In this paper, we present a new low-cost fall detector for smart homes based on artificial vision algorithms. Our detector combines several algorithms (background subtraction, Kalman filtering and optical flow) as input to a machine learning algorithm with high detection accuracy. Tests conducted on over 50 different fall videos have shown a detection ratio of greater than 96%.

摘要

跌倒 是老年人受伤和死亡的主要原因。不幸的是,跌倒探测器通常基于可穿戴设备,而老年人往往忘记佩戴。此外,基于人工视觉的跌倒探测器尚未在市场上推出。在本文中,我们提出了一种新的基于人工视觉算法的智能家居低成本跌倒探测器。我们的探测器将几种算法(背景减除、卡尔曼滤波和光流)结合在一起,作为具有高精度检测率的机器学习算法的输入。对 50 多个不同跌倒视频的测试表明,检测率大于 96%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0954/5751723/beb1c3456fa5/sensors-17-02864-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验