自我跌倒检测:利用单个身体跟踪摄像头进行实时隐私保护的跌倒风险评估

EgoFall: Real-Time Privacy-Preserving Fall Risk Assessment With a Single On-Body Tracking Camera.

作者信息

Wang Chiao-Yi, Sadrieh Faranguisse Kakhi, Shen Yi-Ting, Oppizzi Giovanni, Zhang Li-Qun, Tao Yang

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2025;33:2238-2250. doi: 10.1109/TNSRE.2025.3577550.

Abstract

Falls are a leading cause of injury among older adults, with research indicating that they often fall due to certain individual biomechanical factors. Therefore, real-time individual fall risk assessment is essential for designing more effective fall prevention programs and developing advanced home-based training solutions. However, existing methods for fall risk assessment either raise privacy concerns due to sensors installed in the environment or require multiple wearable devices, limiting their practicality for home-based applications and long-term monitoring. In this paper, we introduce EgoFall, a real-time privacy-preserving fall risk assessment system. EgoFall utilizes a chest-mounted commercial tracking camera and a carefully designed data pre-processing pipeline to acquire the ego-body motion data of the subject. The data is then fed to a lightweight CNN-Transformer model for fall risk assessment. To evaluate the proposed method, we establish the EgoWalk dataset, which includes four walking patterns: normal, anterior-posterior instability, medial-lateral instability, and combined instability. Experimental results show that EgoFall achieves an accuracy exceeding 95% on the EgoWalk dataset, outperforming baseline methods while maintaining low computational complexity. Additionally, a series of ablation studies explore the impact of fine-tuning data and error analysis, further highlighting EgoFall's practicality in real-world applications.

摘要

跌倒是老年人受伤的主要原因,研究表明他们经常因某些个体生物力学因素而跌倒。因此,实时个体跌倒风险评估对于设计更有效的预防跌倒计划和开发先进的家庭训练解决方案至关重要。然而,现有的跌倒风险评估方法要么由于在环境中安装传感器而引发隐私问题,要么需要多个可穿戴设备,这限制了它们在家庭应用和长期监测中的实用性。在本文中,我们介绍了EgoFall,一种实时隐私保护跌倒风险评估系统。EgoFall利用安装在胸部的商用跟踪摄像头和精心设计的数据预处理管道来获取受试者的自我身体运动数据。然后将数据输入到一个轻量级的CNN-Transformer模型中进行跌倒风险评估。为了评估所提出的方法,我们建立了EgoWalk数据集,其中包括四种行走模式:正常、前后不稳定、内外侧不稳定和综合不稳定。实验结果表明,EgoFall在EgoWalk数据集上的准确率超过95%,在保持低计算复杂度的同时优于基线方法。此外,一系列消融研究探讨了微调数据和误差分析的影响,进一步突出了EgoFall在实际应用中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e889/12342964/7dbe95f1f612/nihms-2100036-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索