Zellweger Ueli, Bopp Matthias, Holzer Barbara M, Djalali Sima, Kaplan Vladimir
Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Hirschengraben 84, Zürich CH-8001, Switzerland.
BMC Public Health. 2014 Nov 7;14:1157. doi: 10.1186/1471-2458-14-1157.
Prevalence estimates of chronic medical conditions and their multiples (multimorbidity) in the general population are scarce and often rather speculative in Switzerland. Using complementary data sources, we assessed estimates validity of population-based prevalence rates of four common chronic medical conditions with high impact on cardiovascular health (diabetes mellitus, hypertension, dyslipidemia, obesity).
We restricted our analyses to patients 15-94 years old living in the German speaking part of Switzerland. Data sources were: Swiss Health Survey (SHS, 2007, n = 13,580); Family Medicine ICPC Research using Electronic Medical Record Database (FIRE, 2010-12, n = 99,441); and hospital discharge statistics (MEDSTAT, 2009-10, n = 883,936). We defined chronic medical conditions based on use of drugs, diagnoses, and measurements.
After a careful harmonization of the definitions, a high degree of concordance, especially regarding the age- and gender-specific distribution patterns, was found for diabetes mellitus (defined as drug use or diagnosis in SHS, drug use or diagnosis or blood glucose measurement in FIRE, and ICD-10 codes E10-14 as secondary diagnosis in MEDSTAT) and for hypertension (defined as drug use alone in SHS and FIRE, and ICD-10 codes I10-15 or I67.4 as secondary diagnosis in MEDSTAT). A lesser degree of concordance was found for dyslipidemia (defined as drug use alone in SHS and FIRE, and ICD-10 code E78 in MEDSTAT), and for obesity (defined as BMI ≥ 30 kg/m(2) derived from self-reported height and weight in SHS, from measured height and weight or diagnosis of obesity in FIRE, and ICD-10 code E66 as secondary diagnosis in MEDSTAT). MEDSTAT performed well for clearly defined diagnoses (diabetes, hypertension), but underrepresented systematically more symptomatic conditions (dyslipidemia, obesity).
Complementary data sources can provide different prevalence estimates of chronic medical conditions in the general population. However, common age and sex patterns indicate that a careful harmonization of the definition of each chronic medical condition permits a high degree of concordance.
在瑞士,普通人群中慢性疾病及其合并症(共病)的患病率估计数据稀缺,且往往颇具推测性。我们利用补充数据源,评估了四种对心血管健康有重大影响的常见慢性疾病(糖尿病、高血压、血脂异常、肥胖症)基于人群的患病率估计的有效性。
我们将分析限制在居住在瑞士德语区的15 - 94岁患者。数据源包括:瑞士健康调查(SHS,2007年,n = 13,580);使用电子病历数据库的家庭医学国际初级保健分类研究(FIRE,2010 - 2012年,n = 99,441);以及医院出院统计数据(MEDSTAT,2009 - 2010年,n = 883,936)。我们根据药物使用、诊断和测量结果来定义慢性疾病。
在仔细统一了定义后,发现糖尿病(在SHS中定义为药物使用或诊断,在FIRE中定义为药物使用或诊断或血糖测量,在MEDSTAT中定义为ICD - 10编码E10 - 14作为次要诊断)和高血压(在SHS和FIRE中仅定义为药物使用,在MEDSTAT中定义为ICD - 10编码I10 - 15或I67.4作为次要诊断)在年龄和性别特异性分布模式方面具有高度一致性。血脂异常(在SHS和FIRE中仅定义为药物使用,在MEDSTAT中定义为ICD - 10编码E78)和肥胖症(在SHS中根据自我报告的身高和体重得出BMI≥30kg/m²,在FIRE中根据测量的身高和体重或肥胖症诊断得出,在MEDSTAT中定义为ICD - 10编码E66作为次要诊断)的一致性程度较低。MEDSTAT对于明确界定的诊断(糖尿病、高血压)表现良好,但系统性地低估了症状更明显的疾病(血脂异常、肥胖症)。
补充数据源可以提供普通人群中慢性疾病的不同患病率估计。然而,常见的年龄和性别模式表明,仔细统一每种慢性疾病的定义可实现高度一致性。