Suppr超能文献

一种集成微流控芯片,可实现对微流反应器中温度的控制和空间分辨监测。

An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors.

作者信息

Hoera Christian, Ohla Stefan, Shu Zhe, Beckert Erik, Nagl Stefan, Belder Detlev

机构信息

Institut für Analytische Chemie, Universität Leipzig, Linnéstr. 3, 04103, Leipzig, Germany.

出版信息

Anal Bioanal Chem. 2015 Jan;407(2):387-96. doi: 10.1007/s00216-014-8297-3. Epub 2014 Nov 7.

Abstract

A strength of microfluidic chip laboratories is the rapid heat transfer that, in principle, enables a very homogeneous temperature distribution in chemical processes. In order to exploit this potential, we present an integrated chip system where the temperature is precisely controlled and monitored at the microfluidic channel level. This is realized by integration of a luminescent temperature sensor layer into the fluidic structure together with inkjet-printed micro heating elements. This allows steering of the temperature at the microchannel level and monitoring of the reaction progress simultaneously. A fabrication procedure is presented that allows for straightforward integration of thin polymer layers with optical sensing functionality in microchannels of glass-polydimethylsiloxane (PDMS) chips of only 150 μm width and 29 μm height. Sensor layers consisting of polyacrylonitrile and a temperature-sensitive ruthenium tris-phenanthroline probe with film thicknesses of about 0.5 to 6 μm were generated by combining blade coating and abrasion techniques. Optimal coating procedures were developed and evaluated. The chip-integrated sensor layers were calibrated and investigated with respect to stability, reproducibility, and response times. These microchips allowed observation of temperature in a wide range with a signal change of around 1.6 % per K and a maximum resolution of around 0.07 K. The device is employed to study temperature-controlled continuous micro flow reactions. This is demonstrated exemplarily for the tryptic cleavage of coumarin-modified peptides via fluorescence detection.

摘要

微流控芯片实验室的一个优势是快速热传递,原则上,这能在化学过程中实现非常均匀的温度分布。为了利用这一潜力,我们展示了一种集成芯片系统,该系统能在微流控通道层面精确控制和监测温度。这是通过将发光温度传感器层与喷墨打印的微加热元件集成到流体结构中来实现的。这使得能够在微通道层面控制温度,并同时监测反应进程。本文介绍了一种制造工艺,该工艺允许将具有光学传感功能的薄聚合物层直接集成到仅150μm宽、29μm高的玻璃 - 聚二甲基硅氧烷(PDMS)芯片的微通道中。通过结合刮刀涂布和研磨技术,制备了由聚丙烯腈和膜厚约0.5至6μm的对温度敏感的三联菲咯啉钌探针组成的传感器层。开发并评估了最佳涂布工艺。对芯片集成的传感器层进行了校准,并研究了其稳定性、再现性和响应时间。这些微芯片能够在很宽的温度范围内进行温度观测,信号变化约为每开尔文1.6%,最大分辨率约为0.07开尔文。该装置用于研究温度控制的连续微流反应。通过荧光检测对香豆素修饰肽的胰蛋白酶裂解进行了示例性演示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验