Department of Biophysics , University of Michigan , 930 N. University Avenue , Ann Arbor , Michigan 48109 , United States.
Anal Chem. 2019 Aug 6;91(15):9813-9818. doi: 10.1021/acs.analchem.9b01481. Epub 2019 Jul 19.
Although the application of droplet microfluidics has grown exponentially in chemistry and biology over the past decades, robust universal platforms for the routine generation and comprehensive analysis of droplet-based artificial cells are still rare. Here we report using microfluidic droplets to reproduce a variety of types of cellular machinery in in vitro artificial cells. In combination with a unique image-based analysis method, the system enables full automation in tracking single droplets with high accuracy, high throughput, and high sensitivity. These powerful performances allow broad applicability evident in three representative droplet-based analytical prototypes that we develop for (i) droplet digital detection, (ii) in vitro transcription and translation reactions, and (iii) spatiotemporal dynamics of cell-cycle oscillations. The capacities of this platform to generate, incubate, track, and analyze individual microdroplets via real-time, long-term imaging unleash its great potential in accelerating cell-free synthetic biology. Moreover, the wide scope covering from digital to analog to morphological detections makes this droplet analysis technique adaptable for many other divergent types of droplet-based chemical and biological assays.
尽管过去几十年来液滴微流控技术在化学和生物学领域得到了飞速发展,但用于常规生成和全面分析基于液滴的人工细胞的稳健通用平台仍然很少。在这里,我们报告了使用微流控液滴在体外人工细胞中重现多种类型的细胞机制。结合独特的基于图像的分析方法,该系统能够以高精度、高通量和高灵敏度全自动跟踪单个液滴。这些强大的性能在我们开发的三个具有代表性的基于液滴的分析原型中得到了广泛的应用,这三个原型分别用于 (i) 液滴数字检测、(ii) 体外转录和翻译反应,以及 (iii) 细胞周期振荡的时空动力学。该平台通过实时、长期成像生成、孵育、跟踪和分析单个微滴的能力释放了其在加速无细胞合成生物学中的巨大潜力。此外,涵盖数字到模拟再到形态检测的广泛范围使得这种液滴分析技术能够适应许多其他不同类型的基于液滴的化学和生物学测定。