BioMicroSystems Lab, Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, USA.
Department of Environmental Health, College of Medicine, University of Cincinnati , Cincinnati, Ohio 45221, USA.
Biomicrofluidics. 2014 Jul 30;8(4):044112. doi: 10.1063/1.4891599. eCollection 2014 Jul.
Cell filtration is a critical step in sample preparation in many bioapplications. Herein, we report on a simple, filter-free, microfluidic platform based on hydrodynamic inertial migration. Our approach builds on the concept of two-stage inertial migration which permits precise prediction of microparticle position within the microchannel. Our design manipulates equilibrium positions of larger microparticles by modulating rotation-induced lift force in a low aspect ratio microchannel. Here, we demonstrate filtration of microparticles with extreme efficiency (>99%). Using multiple prostate cell lines (LNCaP and human prostate epithelial tumor cells), we show filtration from spiked blood, with 3-fold concentration and >83% viability. Results of a proliferation assay show normal cell division and suggest no negative effects on intrinsic properties. Considering the planar low-aspect-ratio structure and predictable focusing, we envision promising applications and easy integration with existing lab-on-a-chip systems.
细胞过滤是许多生物应用中样品制备的关键步骤。在此,我们报告了一种基于流体动力惯性迁移的简单、无滤器的微流控平台。我们的方法基于两级惯性迁移的概念,允许在微通道内精确预测微粒子的位置。我们的设计通过在低纵横比微通道中调节旋转诱导的升力来操纵较大微粒子的平衡位置。在这里,我们展示了具有极高效率 (>99%)的微粒子过滤。使用多种前列腺细胞系(LNCaP 和人前列腺上皮肿瘤细胞),我们从掺有血液的样品中过滤出细胞,浓缩倍数为 3 倍,存活率>83%。增殖实验的结果表明细胞正常分裂,这表明对固有特性没有负面影响。考虑到平面低纵横比结构和可预测的聚焦,我们设想了有前景的应用,并可以与现有的微流控芯片系统轻松集成。