Suppr超能文献

低纵横比微通道中旋转诱导升力对细胞过滤的调制。

Modulation of rotation-induced lift force for cell filtration in a low aspect ratio microchannel.

机构信息

BioMicroSystems Lab, Department of Electrical Engineering and Computing Systems, University of Cincinnati , Cincinnati, Ohio 45221, USA.

Department of Environmental Health, College of Medicine, University of Cincinnati , Cincinnati, Ohio 45221, USA.

出版信息

Biomicrofluidics. 2014 Jul 30;8(4):044112. doi: 10.1063/1.4891599. eCollection 2014 Jul.

Abstract

Cell filtration is a critical step in sample preparation in many bioapplications. Herein, we report on a simple, filter-free, microfluidic platform based on hydrodynamic inertial migration. Our approach builds on the concept of two-stage inertial migration which permits precise prediction of microparticle position within the microchannel. Our design manipulates equilibrium positions of larger microparticles by modulating rotation-induced lift force in a low aspect ratio microchannel. Here, we demonstrate filtration of microparticles with extreme efficiency (>99%). Using multiple prostate cell lines (LNCaP and human prostate epithelial tumor cells), we show filtration from spiked blood, with 3-fold concentration and >83% viability. Results of a proliferation assay show normal cell division and suggest no negative effects on intrinsic properties. Considering the planar low-aspect-ratio structure and predictable focusing, we envision promising applications and easy integration with existing lab-on-a-chip systems.

摘要

细胞过滤是许多生物应用中样品制备的关键步骤。在此,我们报告了一种基于流体动力惯性迁移的简单、无滤器的微流控平台。我们的方法基于两级惯性迁移的概念,允许在微通道内精确预测微粒子的位置。我们的设计通过在低纵横比微通道中调节旋转诱导的升力来操纵较大微粒子的平衡位置。在这里,我们展示了具有极高效率 (>99%)的微粒子过滤。使用多种前列腺细胞系(LNCaP 和人前列腺上皮肿瘤细胞),我们从掺有血液的样品中过滤出细胞,浓缩倍数为 3 倍,存活率>83%。增殖实验的结果表明细胞正常分裂,这表明对固有特性没有负面影响。考虑到平面低纵横比结构和可预测的聚焦,我们设想了有前景的应用,并可以与现有的微流控芯片系统轻松集成。

相似文献

1
Modulation of rotation-induced lift force for cell filtration in a low aspect ratio microchannel.
Biomicrofluidics. 2014 Jul 30;8(4):044112. doi: 10.1063/1.4891599. eCollection 2014 Jul.
2
Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
Lab Chip. 2013 May 21;13(10):1919-29. doi: 10.1039/c3lc50101a. Epub 2013 Mar 26.
3
Continuous particle separation in spiral microchannels using Dean flows and differential migration.
Lab Chip. 2008 Nov;8(11):1906-14. doi: 10.1039/b807107a. Epub 2008 Sep 24.
4
A passive microfluidic device for continuous microparticle enrichment.
Electrophoresis. 2019 Mar;40(6):1000-1009. doi: 10.1002/elps.201800454. Epub 2018 Dec 6.
5
Inertial microfluidics for continuous particle separation in spiral microchannels.
Lab Chip. 2009 Oct 21;9(20):2973-80. doi: 10.1039/b908271a. Epub 2009 Jul 21.
6
Fundamentals of inertial focusing in microchannels.
Lab Chip. 2013 Mar 21;13(6):1121-32. doi: 10.1039/c2lc41248a.
8
Lateral and cross-lateral focusing of spherical particles in a square microchannel.
Lab Chip. 2011 Feb 7;11(3):460-5. doi: 10.1039/c0lc00212g. Epub 2010 Nov 12.
9
A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells.
Lab Chip. 2016 May 21;16(10):1821-30. doi: 10.1039/c6lc00215c. Epub 2016 Apr 6.

引用本文的文献

1
Viscoelastic microfluidics: progress and challenges.
Microsyst Nanoeng. 2020 Dec 14;6:113. doi: 10.1038/s41378-020-00218-x. eCollection 2020.
2
Mapping inertial migration in the cross section of a microfluidic channel with high-speed imaging.
Microsyst Nanoeng. 2020 Nov 16;6:105. doi: 10.1038/s41378-020-00217-y. eCollection 2020.
3
Clog-free high-throughput microfluidic cell isolation with multifunctional microposts.
Sci Rep. 2021 Aug 17;11(1):16685. doi: 10.1038/s41598-021-94123-6.
4
Resolving dynamics of inertial migration in straight and curved microchannels by direct cross-sectional imaging.
Biomicrofluidics. 2021 Jan 4;15(1):014101. doi: 10.1063/5.0032653. eCollection 2021 Jan.
5
Label-free microfluidic sorting of microparticles.
APL Bioeng. 2019 Dec 11;3(4):041504. doi: 10.1063/1.5120501. eCollection 2019 Dec.
6
Sheathless High-Throughput Circulating Tumor Cell Separation Using Viscoelastic non-Newtonian Fluid.
Micromachines (Basel). 2019 Jul 10;10(7):462. doi: 10.3390/mi10070462.
8
Isolation of cells from whole blood using shear-induced diffusion.
Sci Rep. 2018 Jun 20;8(1):9411. doi: 10.1038/s41598-018-27779-2.

本文引用的文献

1
Microfluidic electrical sorting of particles based on shape in a spiral microchannel.
Biomicrofluidics. 2014 Jan 14;8(1):014101. doi: 10.1063/1.4862355. eCollection 2014 Jan.
2
Particle separation using virtual deterministic lateral displacement (vDLD).
Lab Chip. 2014 May 7;14(9):1595-603. doi: 10.1039/c3lc51367j. Epub 2014 Mar 18.
3
Rare cell isolation and profiling on a hybrid magnetic/size-sorting chip.
Biomicrofluidics. 2013 Sep 17;7(5):54107. doi: 10.1063/1.4821923. eCollection 2013.
4
Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift.
Biomicrofluidics. 2013 Aug 21;7(4):44120. doi: 10.1063/1.4818907. eCollection 2013.
6
Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis.
Biomicrofluidics. 2013 Jan 16;7(1):11807. doi: 10.1063/1.4774304. eCollection 2013.
7
Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure.
Biomicrofluidics. 2013 Jan 7;7(1):11801. doi: 10.1063/1.4774308. eCollection 2013.
8
Size-selective collection of circulating tumor cells using Vortex technology.
Lab Chip. 2014 Jan 7;14(1):63-77. doi: 10.1039/c3lc50689d. Epub 2013 Sep 23.
10
Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
Anal Chem. 2013 Jul 2;85(13):6213-8. doi: 10.1021/ac4006149. Epub 2013 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验