Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA.
Institute of Micro/Nanotechnology, Old Dominion University, Norfolk, Virginia 23529, USA.
Biomicrofluidics. 2014 Jan 14;8(1):014101. doi: 10.1063/1.4862355. eCollection 2014 Jan.
Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.
形状是细胞周期的内在标志物,是识别生物颗粒的重要因素,也是疾病诊断中细胞状态的有用指标。因此,形状可以作为各种化学和生物应用中无标记颗粒和细胞分离的特定标志物。在这项工作中,我们展示了在非对称双螺旋微通道中对类似体积的球形和花生形颗粒进行连续流电分选的方法。该方法利用曲率诱导的介电泳将颗粒聚焦到第一个螺旋中的紧密流中,而无需鞘流,然后将它们转移到第二个螺旋中的形状依赖的流道中,而无需任何外力。我们还开发了一个数值模型来模拟和理解螺旋微通道中的基于形状的颗粒分选。预测的颗粒轨迹与实验观察定性一致。