Suppr超能文献

基于螺旋微通道中形状的微流控电粒子分选。

Microfluidic electrical sorting of particles based on shape in a spiral microchannel.

机构信息

Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, USA.

Institute of Micro/Nanotechnology, Old Dominion University, Norfolk, Virginia 23529, USA.

出版信息

Biomicrofluidics. 2014 Jan 14;8(1):014101. doi: 10.1063/1.4862355. eCollection 2014 Jan.

Abstract

Shape is an intrinsic marker of cell cycle, an important factor for identifying a bioparticle, and also a useful indicator of cell state for disease diagnostics. Therefore, shape can be a specific marker in label-free particle and cell separation for various chemical and biological applications. We demonstrate in this work a continuous-flow electrical sorting of spherical and peanut-shaped particles of similar volumes in an asymmetric double-spiral microchannel. It exploits curvature-induced dielectrophoresis to focus particles to a tight stream in the first spiral without any sheath flow and subsequently displace them to shape-dependent flow paths in the second spiral without any external force. We also develop a numerical model to simulate and understand this shape-based particle sorting in spiral microchannels. The predicted particle trajectories agree qualitatively with the experimental observation.

摘要

形状是细胞周期的内在标志物,是识别生物颗粒的重要因素,也是疾病诊断中细胞状态的有用指标。因此,形状可以作为各种化学和生物应用中无标记颗粒和细胞分离的特定标志物。在这项工作中,我们展示了在非对称双螺旋微通道中对类似体积的球形和花生形颗粒进行连续流电分选的方法。该方法利用曲率诱导的介电泳将颗粒聚焦到第一个螺旋中的紧密流中,而无需鞘流,然后将它们转移到第二个螺旋中的形状依赖的流道中,而无需任何外力。我们还开发了一个数值模型来模拟和理解螺旋微通道中的基于形状的颗粒分选。预测的颗粒轨迹与实验观察定性一致。

相似文献

1
Microfluidic electrical sorting of particles based on shape in a spiral microchannel.
Biomicrofluidics. 2014 Jan 14;8(1):014101. doi: 10.1063/1.4862355. eCollection 2014 Jan.
2
Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels.
Biomicrofluidics. 2011 Jun;5(2):24111. doi: 10.1063/1.3599883. Epub 2011 Jun 15.
3
Continuous dielectrophoretic separation of particles in a spiral microchannel.
Electrophoresis. 2010 Apr;31(8):1382-8. doi: 10.1002/elps.200900736.
5
Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation.
Anal Chem. 2015 Nov 17;87(22):11523-30. doi: 10.1021/acs.analchem.5b03321. Epub 2015 Nov 5.
6
Deformability-induced lift force in spiral microchannels for cell separation.
Lab Chip. 2020 Feb 7;20(3):614-625. doi: 10.1039/c9lc01000a. Epub 2020 Jan 9.
7
Inertial microfluidics for continuous particle separation in spiral microchannels.
Lab Chip. 2009 Oct 21;9(20):2973-80. doi: 10.1039/b908271a. Epub 2009 Jul 21.
9
Continuous sheath-free magnetic separation of particles in a U-shaped microchannel.
Biomicrofluidics. 2012 Oct 31;6(4):44106. doi: 10.1063/1.4765335. eCollection 2012.
10
Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis.
J Chromatogr A. 2023 Aug 2;1702:464079. doi: 10.1016/j.chroma.2023.464079. Epub 2023 May 22.

引用本文的文献

1
Acoustofluidic separation of prolate and spherical micro-objects.
Microsyst Nanoeng. 2024 Jan 11;10:6. doi: 10.1038/s41378-023-00636-7. eCollection 2024.
2
Fabrication and Manipulation of Non-Spherical Particles in Microfluidic Channels: A Review.
Micromachines (Basel). 2022 Oct 2;13(10):1659. doi: 10.3390/mi13101659.
3
Shape-based separation of micro-/nanoparticles in liquid phases.
Biomicrofluidics. 2018 Oct 23;12(5):051503. doi: 10.1063/1.5052171. eCollection 2018 Sep.
4
Deformability-Based Electrokinetic Particle Separation.
Micromachines (Basel). 2016 Sep 20;7(9):170. doi: 10.3390/mi7090170.
6
Yeast cell fractionation by morphology in dilute ferrofluids.
Biomicrofluidics. 2017 Nov 9;11(6):064102. doi: 10.1063/1.5006445. eCollection 2017 Nov.
7
Microfluidic based high throughput synthesis of lipid-polymer hybrid nanoparticles with tunable diameters.
Biomicrofluidics. 2015 Jun 23;9(5):052604. doi: 10.1063/1.4922957. eCollection 2015 Sep.
8
Modulation of rotation-induced lift force for cell filtration in a low aspect ratio microchannel.
Biomicrofluidics. 2014 Jul 30;8(4):044112. doi: 10.1063/1.4891599. eCollection 2014 Jul.

本文引用的文献

1
Continuous separation of blood cells in spiral microfluidic devices.
Biomicrofluidics. 2013 Sep 5;7(5):54101. doi: 10.1063/1.4819275. eCollection 2013.
2
Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift.
Biomicrofluidics. 2013 Aug 21;7(4):44120. doi: 10.1063/1.4818907. eCollection 2013.
4
Hydrodynamic mechanisms of cell and particle trapping in microfluidics.
Biomicrofluidics. 2013 Apr 5;7(2):21501. doi: 10.1063/1.4799787.
5
Antibody-independent isolation of circulating tumor cells by continuous-flow dielectrophoresis.
Biomicrofluidics. 2013 Jan 16;7(1):11807. doi: 10.1063/1.4774304. eCollection 2013.
6
Separation of tumor cells with dielectrophoresis-based microfluidic chip.
Biomicrofluidics. 2013 Jan 9;7(1):11803. doi: 10.1063/1.4774312. eCollection 2013.
7
Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels.
Biomicrofluidics. 2013 Jan 7;7(1):11802. doi: 10.1063/1.4774311. eCollection 2013.
8
Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives.
Biomicrofluidics. 2012 Dec 12;6(4):44113. doi: 10.1063/1.4771316. eCollection 2012.
9
Stiffness dependent separation of cells in a microfluidic device.
PLoS One. 2013 Oct 16;8(10):e75901. doi: 10.1371/journal.pone.0075901. eCollection 2013.
10
Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis.
Biomicrofluidics. 2012 Jul 13;6(3):34102. doi: 10.1063/1.4732800. Print 2012 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验