Clime Liviu, Hoa Xuyen D, Corneau Nathalie, Morton Keith J, Luebbert Christian, Mounier Maxence, Brassard Daniel, Geissler Matthias, Bidawid Sabah, Farber Jeff, Veres Teodor
National Research Council of Canada, 75 Boulevard de Mortagne, Boucherville, QC, J4B 6Y4, Canada.
Biomed Microdevices. 2015 Feb;17(1):17. doi: 10.1007/s10544-014-9905-x.
Detecting pathogenic bacteria in food or other biological samples with lab-on-a-chip (LOC) devices requires several sample preparation steps prior to analysis which commonly involves cleaning complex sample matrices of large debris. This often underestimated step is important to prevent these larger particles from clogging devices and to preserve initial concentrations when LOC techniques are used to concentrate or isolate smaller target microorganisms for downstream analysis. In this context, we developed a novel microfluidic system for membrane-free cleaning of biological samples from debris particles by combining hydrodynamic focusing and inertial lateral migration effects. The microfluidic device is fabricated using thermoplastic elastomers being compatible with thermoforming fabrication techniques leading to low-cost single-use devices. Microfluidic chip design and pumping protocols are optimized by investigating diffusive losses numerically with coupled Navier-Stokes and convective-diffusion theoretical models. Stability of inertial lateral migration and separation of debris is assessed through fluorescence microscopy measurements with labelled particles serving as a model system. Efficiency of debris cleaning is experimentally investigated by monitoring microchip outlets with in situ optical turbidity sensors, while retention of targeted pathogens (i.e., Listeria monocytogenes) within the sample stream is assessed through bacterial culture techniques. Optimized pumping protocols can remove up to 50 % of debris from ground beef samples while percentage for preserved microorganisms can account for 95 % in relatively clean samples. However, comparison between inoculated turbid and clean samples (i.e., with and without ground beef debris) indicate some degree of interference between debris inertial lateral migration and hydrodynamic focusing of small microorganisms. Although this interference can lead to significant decrease in chip performance through loss of target bacteria, it remains possible to reach 70 % for sample recovery and more than 50 % for debris removal even in the most turbid samples tested. Due to the relatively simple design, the robustness of the inertial migration effect itself, the high operational flow rates and fabrication methods that leverage low-cost materials, the proposed device can have an impact on a wide range of applications where high-throughput separation of particles and biological species is of interest.
使用芯片实验室(LOC)设备检测食品或其他生物样本中的致病细菌,在分析之前需要进行几个样本制备步骤,这通常涉及清理复杂样本基质中的大碎片。这个常常被低估的步骤很重要,它能防止这些较大颗粒堵塞设备,并在使用LOC技术浓缩或分离较小的目标微生物以进行下游分析时保持初始浓度。在此背景下,我们通过结合流体动力聚焦和惯性横向迁移效应,开发了一种用于从碎片颗粒中无膜清洁生物样本的新型微流控系统。该微流控设备采用与热成型制造技术兼容的热塑性弹性体制备,从而得到低成本的一次性设备。通过使用耦合的纳维 - 斯托克斯和对流扩散理论模型对扩散损失进行数值研究,优化微流控芯片设计和泵送方案。通过以标记颗粒作为模型系统的荧光显微镜测量,评估惯性横向迁移的稳定性和碎片的分离情况。通过使用原位光学浊度传感器监测微芯片出口,实验研究碎片清洁效率,同时通过细菌培养技术评估样本流中目标病原体(即单核细胞增生李斯特菌)的保留情况。优化的泵送方案可以从碎牛肉样本中去除高达50%的碎片,而在相对清洁的样本中,保留的微生物百分比可达95%。然而,对接种的浑浊样本和清洁样本(即有和没有碎牛肉碎片的样本)的比较表明,碎片的惯性横向迁移和小微生物的流体动力聚焦之间存在一定程度的干扰。尽管这种干扰可能会通过目标细菌的损失导致芯片性能显著下降,但即使在测试的最浑浊样本中,仍有可能实现70%的样本回收率和超过50%的碎片去除率。由于设计相对简单、惯性迁移效应本身的稳健性、高操作流速以及利用低成本材料的制造方法,所提出的设备可能会对广泛的应用产生影响,这些应用涉及颗粒和生物物种的高通量分离。