Suppr超能文献

空间视觉的外部噪声归一化增益曲线。

The external noise normalized gain profile of spatial vision.

作者信息

Hou Fang, Lu Zhong-Lin, Huang Chang-Bing

机构信息

Department of Psychology, The Ohio State University, Columbus, Ohio, USA.

Department of Psychology, Center for Cognitive Brain and Sciences, and Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, Ohio, USA.

出版信息

J Vis. 2014 Nov 12;14(13):9. doi: 10.1167/14.13.9.

Abstract

The contrast sensitivity function (CSF), a measure of visual sensitivity to a wide range of spatial frequencies, has been widely used as the gain profile of the front-end filter of the visual system to predict how we perceive spatial patterns. However, the CSF itself is determined by the gain profile and other processing inefficiencies of the visual system; it may be problematic to use the CSF as the gain profile in observer models. Here, we applied the external noise paradigm and the perceptual template model (PTM) to characterize several major properties of the visual system. With the external noise normalized gain profile, nonlinearity, and internal additive and multiplicative noises, the PTM accounted for 92.8% of the variance in the experiment data measured in a wide range of conditions and revealed the major processing components that determine the CSF. Unlike the CSF, the external noise normalized gain profile of the visual system is relatively flat across a wide range of spatial frequencies. The results may have major implications for understanding normal and abnormal spatial vision.

摘要

对比敏感度函数(CSF)是对广泛空间频率的视觉敏感度的一种度量,已被广泛用作视觉系统前端滤波器的增益曲线,以预测我们如何感知空间模式。然而,CSF本身是由视觉系统的增益曲线和其他处理效率低下因素决定的;在观察者模型中使用CSF作为增益曲线可能存在问题。在这里,我们应用外部噪声范式和感知模板模型(PTM)来表征视觉系统的几个主要特性。通过外部噪声归一化增益曲线、非线性以及内部加性和乘性噪声,PTM解释了在广泛条件下测量的实验数据中92.8%的方差,并揭示了决定CSF的主要处理组件。与CSF不同,视觉系统的外部噪声归一化增益曲线在广泛的空间频率范围内相对平坦。这些结果可能对理解正常和异常空间视觉具有重要意义。

相似文献

1
The external noise normalized gain profile of spatial vision.
J Vis. 2014 Nov 12;14(13):9. doi: 10.1167/14.13.9.
2
Noise provides new insights on contrast sensitivity function.
PLoS One. 2014 Mar 13;9(3):e90579. doi: 10.1371/journal.pone.0090579. eCollection 2014.
3
Aging affects gain and internal noise in the visual system.
Sci Rep. 2020 Apr 21;10(1):6768. doi: 10.1038/s41598-020-63053-0.
4
Temporal tuning characteristics of the perceptual template and endogenous cuing of spatial attention.
Vision Res. 2004 Jun;44(12):1333-50. doi: 10.1016/j.visres.2003.12.017.
5
Characterizing the spatial-frequency sensitivity of perceptual templates.
J Opt Soc Am A Opt Image Sci Vis. 2001 Sep;18(9):2041-53. doi: 10.1364/josaa.18.002041.
6
The spatial window of the perceptual template and endogenous attention.
Vision Res. 2004 Jun;44(12):1257-71. doi: 10.1016/j.visres.2004.01.011.
7
Treated amblyopes remain deficient in spatial vision: a contrast sensitivity and external noise study.
Vision Res. 2007 Jan;47(1):22-34. doi: 10.1016/j.visres.2006.09.015. Epub 2006 Nov 13.
8
Three stages and two systems of visual processing.
Spat Vis. 1989;4(2-3):183-207. doi: 10.1163/156856889x00112.

引用本文的文献

1
How the window of visibility varies around polar angle.
J Vis. 2024 Nov 4;24(12):4. doi: 10.1167/jov.24.12.4.
2
Quantifying the Functional Relationship Between Visual Acuity and Contrast Sensitivity Function.
Invest Ophthalmol Vis Sci. 2024 Oct 1;65(12):33. doi: 10.1167/iovs.65.12.33.
3
How the window of visibility varies around polar angle.
bioRxiv. 2024 Jul 16:2024.07.12.603257. doi: 10.1101/2024.07.12.603257.
4
Visual Tracking in Amblyopia: A Continuous Psychophysical Approach.
Invest Ophthalmol Vis Sci. 2024 May 1;65(5):7. doi: 10.1167/iovs.65.5.7.
6
Mechanisms of Surround Suppression Effect on the Contrast Sensitivity of V1 Neurons in Cats.
Neural Plast. 2022 Mar 8;2022:5677655. doi: 10.1155/2022/5677655. eCollection 2022.
8
Defective Temporal Window of the Foveal Visual Processing in High Myopia.
Invest Ophthalmol Vis Sci. 2021 Jul 1;62(9):11. doi: 10.1167/iovs.62.9.11.
9
Temporal Characteristics of Visual Processing in Amblyopia.
Front Neurosci. 2021 Jun 3;15:673491. doi: 10.3389/fnins.2021.673491. eCollection 2021.

本文引用的文献

1
Noise provides new insights on contrast sensitivity function.
PLoS One. 2014 Mar 13;9(3):e90579. doi: 10.1371/journal.pone.0090579. eCollection 2014.
4
Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision.
Vision Res. 2011 Sep 15;51(18):1995-2007. doi: 10.1016/j.visres.2011.06.020. Epub 2011 Aug 9.
5
Spatial contrast sensitivity in dynamic and static additive luminance noise.
Vision Res. 2010 Sep 15;50(19):1957-65. doi: 10.1016/j.visres.2010.07.006. Epub 2010 Jul 16.
6
qCSF in clinical application: efficient characterization and classification of contrast sensitivity functions in amblyopia.
Invest Ophthalmol Vis Sci. 2010 Oct;51(10):5365-77. doi: 10.1167/iovs.10-5468. Epub 2010 May 19.
8
Scale dependence and channel switching in letter identification.
J Vis. 2009 Aug 13;9(9):4.1-19. doi: 10.1167/9.9.4.
9
Predicting visual acuity from wavefront aberrations.
J Vis. 2008 Apr 22;8(4):17.1-19. doi: 10.1167/8.4.17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验