Suppr超能文献

中央视觉和周边视觉中模式识别的空间频率截止要求。

Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision.

作者信息

Kwon Miyoung, Legge Gordon E

机构信息

Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Rd., Minneapolis, MN 55455, USA.

出版信息

Vision Res. 2011 Sep 15;51(18):1995-2007. doi: 10.1016/j.visres.2011.06.020. Epub 2011 Aug 9.

Abstract

It is well known that object recognition requires spatial frequencies exceeding some critical cutoff value. People with central scotomas who rely on peripheral vision have substantial difficulty with reading and face recognition. Deficiencies of pattern recognition in peripheral vision, might result in higher cutoff requirements, and may contribute to the functional problems of people with central-field loss. Here we asked about differences in spatial-cutoff requirements in central and peripheral vision for letter and face recognition. The stimuli were the 26 letters of the English alphabet and 26 celebrity faces. Each image was blurred using a low-pass filter in the spatial frequency domain. Critical cutoffs (defined as the minimum low-pass filter cutoff yielding 80% accuracy) were obtained by measuring recognition accuracy as a function of cutoff frequency (in cycles per object). Our data showed that critical cutoffs increased from central to peripheral vision by 20% for letter recognition and by 50% for face recognition. We asked whether these differences could be accounted for by central/peripheral differences in the contrast sensitivity function (CSF). We addressed this question by implementing an ideal-observer model which incorporates empirical CSF measurements and tested the model on letter and face recognition. The success of the model indicates that central/peripheral differences in the cutoff requirements for letter and face recognition can be accounted for by the information content of the stimulus limited by the shape of the human CSF, combined with a source of internal noise and followed by an optimal decision rule.

摘要

众所周知,物体识别需要空间频率超过某个临界截止值。依赖周边视觉的中心暗点患者在阅读和人脸识别方面存在很大困难。周边视觉中模式识别的缺陷可能导致更高的截止要求,并可能导致中心视野丧失患者的功能问题。在这里,我们研究了中心视觉和周边视觉在字母和人脸识别方面空间截止要求的差异。刺激物是26个英文字母和26张名人脸。每个图像在空间频率域中使用低通滤波器进行模糊处理。通过测量识别准确率作为截止频率(每物体周期数)的函数来获得临界截止值(定义为产生80%准确率的最低低通滤波器截止值)。我们的数据表明,字母识别的临界截止值从中心视觉到周边视觉增加了20%,人脸识别增加了50%。我们询问这些差异是否可以由对比敏感度函数(CSF)的中心/周边差异来解释。我们通过实施一个理想观察者模型来解决这个问题,该模型纳入了经验性的CSF测量,并在字母和人脸识别上对该模型进行了测试。该模型的成功表明,字母和人脸识别截止要求的中心/周边差异可以由受人类CSF形状限制的刺激信息内容、内部噪声源以及最优决策规则来解释。

相似文献

1
Spatial-frequency cutoff requirements for pattern recognition in central and peripheral vision.
Vision Res. 2011 Sep 15;51(18):1995-2007. doi: 10.1016/j.visres.2011.06.020. Epub 2011 Aug 9.
2
Higher-contrast requirements for recognizing low-pass-filtered letters.
J Vis. 2013 Jan 9;13(1):13. doi: 10.1167/13.1.13.
3
Spatial-frequency characteristics of letter identification in central and peripheral vision.
Vision Res. 2002 Aug;42(18):2137-152. doi: 10.1016/s0042-6989(02)00092-5.
4
Identification of band-pass filtered letters and faces by human and ideal observers.
Vision Res. 1999 Oct;39(21):3537-60. doi: 10.1016/s0042-6989(99)00080-2.
7
Object crowding.
J Vis. 2011 May 25;11(6):10.1167/11.6.19 19. doi: 10.1167/11.6.19.
9
A crowdful of letters: disentangling the role of similarity, eccentricity and spatial frequencies in letter crowding.
Vision Res. 2014 Apr;97:45-51. doi: 10.1016/j.visres.2014.02.001. Epub 2014 Feb 19.
10
Learning to identify contrast-defined letters in peripheral vision.
Vision Res. 2006 Mar;46(6-7):1038-47. doi: 10.1016/j.visres.2005.10.013. Epub 2005 Dec 6.

引用本文的文献

1
Quantifying the Functional Relationship Between Visual Acuity and Contrast Sensitivity Function.
Invest Ophthalmol Vis Sci. 2024 Oct 1;65(12):33. doi: 10.1167/iovs.65.12.33.
4
Relative tuning of holistic face processing towards the fovea.
Vision Res. 2022 Aug;197:108049. doi: 10.1016/j.visres.2022.108049. Epub 2022 Apr 20.
7
Investigation of the Relationship Between Subjective Symptoms of Visual Fatigue and Visual Functions.
Front Neurosci. 2021 Jul 15;15:686740. doi: 10.3389/fnins.2021.686740. eCollection 2021.
8
Unresolvable Pixels Contribute to Character Legibility: Another Reason Why High-Resolution Images Appear Clearer.
Iperception. 2020 Dec 26;11(6):2041669520981102. doi: 10.1177/2041669520981102. eCollection 2020 Nov-Dec.
10
Simulating visibility under reduced acuity and contrast sensitivity.
J Opt Soc Am A Opt Image Sci Vis. 2017 Apr 1;34(4):583-593. doi: 10.1364/JOSAA.34.000583.

本文引用的文献

2
Shift in spatial scale in identifying crowded letters.
Vision Res. 2007 Feb;47(4):437-51. doi: 10.1016/j.visres.2006.11.012. Epub 2007 Jan 16.
3
Feature detection and letter identification.
Vision Res. 2006 Dec;46(28):4646-74. doi: 10.1016/j.visres.2006.04.023. Epub 2006 Jun 30.
4
5
Spatial-frequency characteristics of letter identification in central and peripheral vision.
Vision Res. 2002 Aug;42(18):2137-152. doi: 10.1016/s0042-6989(02)00092-5.
6
Unraveling mechanisms for expert object recognition: bridging brain activity and behavior.
J Exp Psychol Hum Percept Perform. 2002 Apr;28(2):431-46. doi: 10.1037//0096-1523.28.2.431.
7
The role of spatial frequency channels in letter identification.
Vision Res. 2002 Apr;42(9):1165-84. doi: 10.1016/s0042-6989(02)00045-7.
8
The psychometric function: I. Fitting, sampling, and goodness of fit.
Percept Psychophys. 2001 Nov;63(8):1293-313. doi: 10.3758/bf03194544.
9
Identification of facial images in peripheral vision.
Vision Res. 2001 Mar;41(5):599-610. doi: 10.1016/s0042-6989(00)00259-5.
10
Identification of band-pass filtered letters and faces by human and ideal observers.
Vision Res. 1999 Oct;39(21):3537-60. doi: 10.1016/s0042-6989(99)00080-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验