Bushong Eric A, Johnson Donald D, Kim Keun-Young, Terada Masako, Hatori Megumi, Peltier Steven T, Panda Satchidananda, Merkle Arno, Ellisman Mark H
1Center for Research in Biological Systems,National Center for Microscopy and Imaging Research,University of California at San Diego,9500 Gilman Drive,La Jolla,CA 92093,USA.
2Carl Zeiss X-ray Microscopy Inc.,4385 Hopyard Rd #100,Pleasanton,CA 94588,USA.
Microsc Microanal. 2015 Feb;21(1):231-8. doi: 10.1017/S1431927614013579. Epub 2014 Nov 13.
The recently developed three-dimensional electron microscopic (EM) method of serial block-face scanning electron microscopy (SBEM) has rapidly established itself as a powerful imaging approach. Volume EM imaging with this scanning electron microscopy (SEM) method requires intense staining of biological specimens with heavy metals to allow sufficient back-scatter electron signal and also to render specimens sufficiently conductive to control charging artifacts. These more extreme heavy metal staining protocols render specimens light opaque and make it much more difficult to track and identify regions of interest (ROIs) for the SBEM imaging process than for a typical thin section transmission electron microscopy correlative light and electron microscopy study. We present a strategy employing X-ray microscopy (XRM) both for tracking ROIs and for increasing the efficiency of the workflow used for typical projects undertaken with SBEM. XRM was found to reveal an impressive level of detail in tissue heavily stained for SBEM imaging, allowing for the identification of tissue landmarks that can be subsequently used to guide data collection in the SEM. Furthermore, specific labeling of individual cells using diaminobenzidine is detectable in XRM volumes. We demonstrate that tungsten carbide particles or upconverting nanophosphor particles can be used as fiducial markers to further increase the precision and efficiency of SBEM imaging.
最近开发的连续块面扫描电子显微镜(SBEM)三维电子显微镜(EM)方法已迅速成为一种强大的成像方法。使用这种扫描电子显微镜(SEM)方法进行体积EM成像需要用重金属对生物标本进行强烈染色,以产生足够的背散射电子信号,并使标本具有足够的导电性,以控制充电伪像。这些更为极端的重金属染色方案会使标本变得不透光,并且与典型的薄切片透射电子显微镜相关光镜和电镜研究相比,在SBEM成像过程中追踪和识别感兴趣区域(ROI)变得更加困难。我们提出了一种策略,即采用X射线显微镜(XRM)来追踪ROI,并提高使用SBEM进行的典型项目所采用工作流程的效率。结果发现,XRM在为SBEM成像而重度染色的组织中能揭示出令人印象深刻的细节水平,从而能够识别随后可用于指导SEM数据采集的组织标志物。此外,在XRM体积中可以检测到使用二氨基联苯胺对单个细胞进行的特异性标记。我们证明,碳化钨颗粒或上转换纳米磷光体颗粒可用作基准标记,以进一步提高SBEM成像的精度和效率。