Mattice Jenna R, Shisler Krista A, Malone Jadyn R, Murray Nic A, Tokmina-Lukaszewska Monika, Nath Arnab K, Flusche Tamara, Mus Florence, DuBois Jennifer L, Peters John W, Bothner Brian
Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
Institute of Biological Chemistry, Washington State University, Pullman, WA 99163, USA.
Int J Mol Sci. 2025 Jun 20;26(13):5945. doi: 10.3390/ijms26135945.
Acetone carboxylase (AC) from is a 360 KDa αβγ heterohexamer that catalyzes the ATP-dependent formation of phosphorylated acetone and bicarbonate intermediates that react at Mn(II) metal active sites to form acetoacetate. Structural models of AC (XaAC) with and without nucleotides reveal that the binding and phosphorylation of the two substrates occurs ~40 Å from the Mn(II) active sites where acetoacetate is formed. Based on the crystal structures, a significant conformational change was proposed to open and close a tunnel that facilitates the passage of reaction intermediates between the sites for nucleotide binding and phosphorylation of substrates and Mn(II) sites of acetoacetate formation. We have employed electron paramagnetic resonance (EPR), kinetic assays, and hydrogen/deuterium exchange mass spectrometry (HDX-MS) of poised ligand-bound states and site-specific amino acid variants to complete an in-depth analysis of Mn(II) coordination and allosteric communication throughout the catalytic cycle. In contrast with the established paradigms for carboxylation, our analyses of XaAC suggested a carboxylate shift that couples both local and long-range structural transitions. Shifts in the coordination mode of a single carboxylic acid residue (αE89) mediate both catalysis proximal to a Mn(II) center and communication with an ATP active site in a separate subunit of a 180 kDa αβγ complex at a distance of 40 Å. This work demonstrates the power of combining structural models from X-ray crystallography with solution-phase spectroscopy and biophysical techniques to elucidate functional aspects of a multi-subunit enzyme.
来自[具体来源未提及]的丙酮羧化酶(AC)是一种360 kDa的αβγ异源六聚体,它催化ATP依赖性地形成磷酸化丙酮和碳酸氢盐中间体,这些中间体在Mn(II)金属活性位点反应形成乙酰乙酸。有核苷酸和无核苷酸的AC(XaAC)结构模型表明,两种底物的结合和磷酸化发生在距形成乙酰乙酸的Mn(II)活性位点约40 Å处。基于晶体结构,有人提出了一种显著的构象变化,以打开和关闭一条通道,促进反应中间体在核苷酸结合位点、底物磷酸化位点与乙酰乙酸形成的Mn(II)位点之间通过。我们采用电子顺磁共振(EPR)、动力学测定以及对处于平衡配体结合状态和位点特异性氨基酸变体的氢/氘交换质谱(HDX-MS),对整个催化循环中的Mn(II)配位和变构通讯进行了深入分析。与既定的羧化模式相反,我们对XaAC的分析表明存在一种羧酸盐移位,它耦合了局部和远程的结构转变。单个羧酸残基(αE89)配位模式的改变既介导了靠近Mn(II)中心的催化作用,又介导了与180 kDa αβγ复合物中一个单独亚基上距离40 Å的ATP活性位点的通讯。这项工作展示了将X射线晶体学的结构模型与溶液相光谱和生物物理技术相结合来阐明多亚基酶功能方面的强大作用。