Credle J J, George J L, Wills J, Duka V, Shah K, Lee Y-C, Rodriguez O, Simkins T, Winter M, Moechars D, Steckler T, Goudreau J, Finkelstein D I, Sidhu A
Department of Biochemistry, Georgetown University, Washington, D.C., USA.
Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic, 3010, Australia.
Cell Death Differ. 2015 May;22(5):838-51. doi: 10.1038/cdd.2014.179. Epub 2014 Nov 14.
Aberrant posttranslational modifications (PTMs) of proteins, namely phosphorylation, induce abnormalities in the biological properties of recipient proteins, underlying neurological diseases including Parkinson's disease (PD). Genome-wide studies link genes encoding α-synuclein (α-Syn) and Tau as two of the most important in the genesis of PD. Although several kinases are known to phosphorylate α-Syn and Tau, we focused our analysis on GSK-3β because of its accepted role in phosphorylating Tau and to increasing evidence supporting a strong biophysical relationship between α-Syn and Tau in PD. Therefore, we investigated transgenic mice, which express a point mutant (S9A) of human GSK-3β. GSK-3β-S9A is capable of activation through endogenous natural signaling events, yet is unable to become inactivated through phosphorylation at serine-9. We used behavioral, biochemical, and in vitro analysis to assess the contributions of GSK-3β to both α-Syn and Tau phosphorylation. Behavioral studies revealed progressive age-dependent impairment of motor function, accompanied by loss of tyrosine hydroxylase-positive (TH+ DA-neurons) neurons and dopamine production in the oldest age group. Magnetic resonance imaging revealed deterioration of the substantia nigra in aged mice, a characteristic feature of PD patients. At the molecular level, kinase-active p-GSK-3β-Y216 was seen at all ages throughout the brain, yet elevated levels of p-α-Syn-S129 and p-Tau (S396/404) were found to increase with age exclusively in TH+ DA-neurons of the midbrain. p-GSK-3β-Y216 colocalized with p-Tau and p-α-Syn-S129. In vitro kinase assays showed that recombinant human GSK-3β directly phosphorylated α-Syn at a single site, Ser129, in addition to its known ability to phosphorylate Tau. Moreover, α-Syn and Tau together cooperated with one another to increase the magnitude or rate of phosphorylation of the other by GSK-3β. Together, these data establish a novel upstream role for GSK-3β as one of several kinases associated with PTMs of key proteins known to be causal in PD.
蛋白质的异常翻译后修饰(PTM),即磷酸化,会导致受体蛋白生物学特性异常,这是包括帕金森病(PD)在内的神经疾病的潜在病因。全基因组研究表明,编码α-突触核蛋白(α-Syn)和 Tau 蛋白的基因是 PD 发病过程中最重要的两个基因。虽然已知几种激酶可使α-Syn 和 Tau 磷酸化,但我们将分析重点放在糖原合酶激酶-3β(GSK-3β)上,因为它在使 Tau 磷酸化方面已被认可,而且越来越多的证据支持在 PD 中α-Syn 和 Tau 之间存在紧密的生物物理关系。因此,我们研究了表达人类 GSK-3β 点突变体(S9A)的转基因小鼠。GSK-3β-S9A 能够通过内源性自然信号事件被激活,但不能通过丝氨酸 9 位点的磷酸化而失活。我们使用行为学、生物化学和体外分析方法来评估 GSK-3β 对α-Syn 和 Tau 磷酸化的作用。行为学研究显示,运动功能随年龄增长逐渐受损,在最年长的年龄组中伴有酪氨酸羟化酶阳性(TH+多巴胺能神经元)神经元的丧失和多巴胺生成的减少。磁共振成像显示老年小鼠黑质退化,这是 PD 患者的一个特征性表现。在分子水平上,激酶活性的磷酸化 GSK-3β-Y216 在全脑各年龄段均可见,但磷酸化α-Syn-S129 和磷酸化 Tau(S396/404)水平升高仅在中脑的 TH+多巴胺能神经元中随年龄增加。磷酸化 GSK-3β-Y216 与磷酸化 Tau 和磷酸化α-Syn-S129 共定位。体外激酶分析表明,重组人 GSK-3β 除了已知能够使 Tau 磷酸化外,还能直接在单个位点 Ser129 使α-Syn 磷酸化。此外,α-Syn 和 Tau 相互协作,增加了 GSK-3β 对彼此的磷酸化程度或速率。总之,这些数据确立了 GSK-3β 作为与已知在 PD 中起因果作用的关键蛋白 PTM 相关的几种激酶之一的新的上游作用。