Suppr超能文献

不同类型未观察到的时间趋势导致的随机临床试验中的时间顺序偏差。

Chronological bias in randomized clinical trials arising from different types of unobserved time trends.

作者信息

Tamm M, Hilgers R-D

机构信息

Miriam Tamm, RWTH Aachen University, Department of Medical Statistics, Pauwelsstraße 30, 52074 Aachen, Germany.

出版信息

Methods Inf Med. 2014;53(6):501-10. doi: 10.3414/ME14-01-0048. Epub 2014 Nov 14.

Abstract

BACKGROUND

In clinical trials patients are commonly recruited sequentially over time incurring the risk of chronological bias due to (unobserved) time trends. To minimize the risk of chronological bias, a suitable randomization procedure should be chosen.

OBJECTIVES

Considering different time trend scenarios, we aim at a detailed evaluation of the extent of chronological bias under permuted block randomization in order to provide recommendations regarding the choice of randomization at the design stage of a clinical trial and to assess the maximum extent of bias for a realized sequence in the analysis stage.

METHODS

For the assessment of chronological bias we consider linear, logarithmic and stepwise trends illustrating typical changes during recruitment in clinical practice. Bias and variance of the treatment effect estimator as well as the empirical type I error rate when applying the t-test are investigated. Different sample sizes, block sizes and strengths of time trends are considered.

RESULTS

Using large block sizes, a notable bias exists in the estimate of the treatment effect for specific sequences. This results in a heavily inflated type I error for realized worst-case sequences and an enlarged mean squared error of the treatment effect estimator. Decreasing the block size restricts these effects of time trends. Already applying permuted block randomization with two blocks instead of the random allocation rule achieves a good reduction of the mean squared error and of the inflated type I error. Averaged over all sequences, the type I error of the t-test is far below the nominal significance level due to an overestimated variance.

CONCLUSIONS

Unobserved time trends can induce a strong bias in the treatment effect estimate and in the test decision. Therefore, already in the design stage of a clinical trial a suitable randomization procedure should be chosen. According to our results, small block sizes should be preferred, but also medium block sizes are sufficient to restrict chronological bias to an acceptable extent if other contrary aspects have to be considered (e.g. serious risk of selection bias). Regardless of the block size, a blocked ANOVA should be used because the t-test is far too conservative, even for weak time trends.

摘要

背景

在临床试验中,患者通常随时间顺序招募,这会因(未观察到的)时间趋势而产生时间顺序偏倚的风险。为了将时间顺序偏倚的风险降至最低,应选择合适的随机化程序。

目的

考虑不同的时间趋势情况,我们旨在详细评估置换区组随机化下时间顺序偏倚的程度,以便在临床试验设计阶段就随机化的选择提供建议,并在分析阶段评估已实现序列的最大偏倚程度。

方法

为了评估时间顺序偏倚,我们考虑线性、对数和逐步趋势,以说明临床实践中招募期间的典型变化。研究了治疗效果估计量的偏倚和方差,以及应用t检验时的经验性I型错误率。考虑了不同的样本量、区组大小和时间趋势强度。

结果

使用大的区组大小时,特定序列的治疗效果估计存在显著偏倚。这导致已实现的最坏情况序列的I型错误严重膨胀,以及治疗效果估计量的均方误差增大。减小区组大小可限制时间趋势的这些影响。仅应用两个区组的置换区组随机化而非随机分配规则,就能很好地降低均方误差和膨胀的I型错误。在所有序列上平均,由于方差被高估,t检验的I型错误远低于名义显著性水平。

结论

未观察到的时间趋势可在治疗效果估计和检验决策中引起强烈偏倚。因此,在临床试验设计阶段就应选择合适的随机化程序。根据我们的结果,应优先选择小区组大小,但如果必须考虑其他相反因素(例如严重的选择偏倚风险),中区组大小也足以将时间顺序偏倚限制在可接受的程度。无论区组大小如何,都应使用区组方差分析,因为即使对于较弱的时间趋势,t检验也过于保守。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验