Suppr超能文献

临床试验中置换区组随机化的性质。

Properties of permuted-block randomization in clinical trials.

作者信息

Matts J P, Lachin J M

机构信息

Department of Surgery, University of Minnesota, Minneapolis 55414.

出版信息

Control Clin Trials. 1988 Dec;9(4):327-44. doi: 10.1016/0197-2456(88)90047-5.

Abstract

This article describes some of the important statistical properties of the commonly used permuted-block design, also known simply as blocked-randomization. Under a permutation model for statistical tests, proper analyses should employ tests that incorporate the blocking used in the randomization. These include the block-stratified Mantel-Haenszel chi-square test for binary data, the blocked analysis of variance F test, and the blocked nonparametric linear rank test. It is common, however, to ignore the blocking in the analysis. For these tests, it is shown that the size of a test obtained from an analysis incorporating the blocking (say T), versus an analysis ignoring the blocking (say TI), is related to the intrablock correlation coefficient (R) as TI = T(1-R). For blocks of common length 2m, the range of R is from -1/(2m-1) to 1. Thus, if there is a positive intrablock correlation, which is more likely than not for m greater than 1, an analysis ignoring blocking will be unduly conservative. Permutation tests are also presented for the case of stratified analyses within one or more subgroups of patients defined post hoc on the basis of a covariate. This provides a basis for the analysis when responses from some patients are assumed to be missing-at-random. An alternative strategy that requires no assumptions is to perform the analysis using only the subset of complete blocks in which no observations are missing. The Blackwell-Hodges model is used to assess the potential for selection bias induced by investigator attempts to guess which treatment is more likely to be assigned to each incoming patient. In an unmasked trial, the permuted-block design provides substantial potential for selection bias in the comparison of treatments due to the predictability of the assignments that is induced by the requirement of balance within blocks. Further, this bias is not eliminated by the use of random block sizes. We also modify the Blackwell-Hodges model to allow for selection bias only when the investigator is able to discern the next assignment with certainty. This type of bias is reduced by the use of random block sizes and is eliminated only if the possible block sizes are unknown to the investigators. Finally, the Efron model for accidental bias is used to assess the potential for bias in the estimation of treatment effects due to covariate imbalances. For the permuted-block design, the variance of this bias approaches that of complete randomization as the half-block length m----infinity.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

本文描述了常用的置换区组设计(也简称为区组随机化)的一些重要统计特性。在统计检验的置换模型下,恰当的分析应采用纳入随机化中区组因素的检验方法。这些方法包括用于二元数据的区组分层曼特尔 - 亨泽尔卡方检验、区组方差分析F检验以及区组非参数线性秩检验。然而,在分析中忽略区组因素的情况很常见。对于这些检验,结果表明,纳入区组因素的分析(设为T)与忽略区组因素的分析(设为TI)所得到的检验效能,与区内相关系数(R)的关系为TI = T(1 - R)。对于长度为2m的常见区组,R的取值范围是从 -1/(2m - 1)到1。因此,如果存在正的区内相关(当m大于1时这种情况很可能出现),忽略区组因素的分析会过度保守。本文还给出了在基于协变量事后定义的一个或多个患者亚组内进行分层分析时的置换检验。这为假设部分患者的反应为随机缺失时的分析提供了基础。另一种无需假设的替代策略是仅使用无缺失观测值的完整区组子集进行分析。布莱克韦尔 - 霍奇斯模型用于评估研究者试图猜测每个即将入组患者更可能被分配何种治疗所导致的选择偏倚可能性。在开放试验中,由于区组内平衡要求所导致的分配可预测性,置换区组设计在治疗比较中存在较大的选择偏倚可能性。此外,使用随机区组大小并不能消除这种偏倚。我们还对布莱克韦尔 - 霍奇斯模型进行了修改,使其仅在研究者能够确切辨别下一个分配时才考虑选择偏倚。这种偏倚通过使用随机区组大小得以减少,并且只有在研究者不知道可能的区组大小时才会消除。最后,使用埃弗龙意外偏倚模型评估由于协变量不平衡导致的治疗效果估计中的偏倚可能性。对于置换区组设计,当半区组长度m趋于无穷大时,这种偏倚的方差趋近于完全随机化的方差。(摘要截取自400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验