Suppr超能文献

Multiple transport systems for organic cations in renal brush-border membrane vesicles.

作者信息

Miyamoto Y, Tiruppathi C, Ganapathy V, Leibach F H

机构信息

Department of Cell and Molecular Biology, Medical College of Georgia, Augusta 30912-2100.

出版信息

Am J Physiol. 1989 Apr;256(4 Pt 2):F540-8. doi: 10.1152/ajprenal.1989.256.4.F540.

Abstract

The characteristics of guanidine uptake in brush-border membrane vesicles isolated from rabbit renal cortex were investigated. Guanidine uptake was markedly stimulated by an outwardly directed H+ gradient, resulting in a transient uphill transport. This stimulation was not due to an inside-negative, H+-diffusion potential because an ionophore-induced H+-diffusion potential and a K+-diffusion potential (both inside-negative) failed to enhance guanidine uptake. The H+ gradient itself appeared to be the driving force for the uptake. These data suggest that guanidine-H+ antiport (or guanidine-OH- symport) is the mechanism of guanidine uptake in these membrane vesicles. Guanidine uptake was only minimally inhibited by organic cations such as tetraethylammonium, N1-methylnicotinamide, and choline, but many other organic cations such as amiloride, clonidine, imipramine, and harmaline caused considerable inhibition. Uptake of radiolabeled guanidine was inhibited more effectively by guanidine than by tetraethylammonium, whereas uptake of radiolabeled tetraethylammonium was inhibited more effectively by tetraethylammonium than by guanidine. beta-Lactam antibiotics did not inhibit guanidine uptake but did inhibit tetraethylammonium uptake. Kinetic analysis showed that there were at least two kinetically distinct carrier systems for guanidine uptake, whereas tetraethylammonium uptake occurred via a single carrier system. These data provide evidence that renal brush-border membranes possess multiple carrier systems for organic cations.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验