Liao Shu-Hsien, Chen Kuen-Lin, Wang Chun-Min, Chieh Jen-Jie, Horng Herng-Er, Wang Li-Min, Wu C H, Yang Hong-Chang
Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan.
Department of Electro-Optical Engineering, Kun Shan University, Tainan 710, Taiwan.
Sensors (Basel). 2014 Nov 12;14(11):21409-17. doi: 10.3390/s141121409.
In this work, we report the use of bio-functionalized magnetic nanoparticles (BMNs) and dynamic magnetic resonance (DMR) to characterize the time-dependent spin-spin relaxation time for sensitive bio-detection. The biomarkers are the human C-reactive protein (CRP) while the BMNs are the anti-CRP bound onto dextran-coated Fe3O4 particles labeled as Fe3O4-antiCRP. It was found the time-dependent spin-spin relaxation time, T2, of protons decreases as time evolves. Additionally, the ΔT2 of of protons in BMNs increases as the concentration of CRP increases. We attribute these to the formation of the magnetic clusters that deteriorate the field homogeneity of nearby protons. A sensitivity better than 0.1 μg/mL for assaying CRP is achieved, which is much higher than that required by the clinical criteria (0.5 mg/dL). The present MR-detection platform shows promise for further use in detecting tumors, viruses, and proteins.
在这项工作中,我们报告了使用生物功能化磁性纳米颗粒(BMNs)和动态磁共振(DMR)来表征用于灵敏生物检测的时间依赖性自旋-自旋弛豫时间。生物标志物是人C反应蛋白(CRP),而BMNs是结合在葡聚糖包被的Fe3O4颗粒上的抗CRP,标记为Fe3O4-antiCRP。研究发现,质子的时间依赖性自旋-自旋弛豫时间T2随时间演变而减小。此外,BMNs中质子的ΔT2随着CRP浓度的增加而增加。我们将这些归因于磁性簇的形成,其破坏了附近质子的场均匀性。测定CRP时实现了优于0.1μg/mL的灵敏度,这远高于临床标准(0.5mg/dL)所要求的灵敏度。目前的磁共振检测平台显示出在检测肿瘤、病毒和蛋白质方面进一步应用的前景。