Price Morgan N, Ray Jayashree, Wetmore Kelly M, Kuehl Jennifer V, Bauer Stefan, Deutschbauer Adam M, Arkin Adam P
Physical Biosciences Division, Lawrence Berkeley Lab Berkeley, CA, USA.
Energy Biosciences Institute, University of California Berkeley, CA, USA.
Front Microbiol. 2014 Oct 31;5:577. doi: 10.3389/fmicb.2014.00577. eCollection 2014.
Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but it remains unclear how reducing sulfate yields energy. To determine the genetic basis of energy conservation, we measured the fitness of thousands of pooled mutants of Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is required whenever substrate-level phosphorylation is not possible. The uncharacterized complex Hdr/flox-1 (Dde_1207:13) is sometimes important alongside Rnf and may perform an electron bifurcation to generate more reduced ferredoxin from NADH to allow further ion pumping. Similarly, during the oxidation of malate or fumarate, the electron-bifurcating transhydrogenase NfnAB-2 (Dde_1250:1) is important and may generate reduced ferredoxin to allow additional ion pumping by Rnf. During formate oxidation, the periplasmic [NiFeSe] hydrogenase HysAB is required, which suggests that hydrogen forms in the periplasm, diffuses to the cytoplasm, and is used to reduce ferredoxin, thus providing a substrate for Rnf. During hydrogen utilization, the transmembrane electron transport complex Tmc is important and may move electrons from the periplasm into the cytoplasmic sulfite reduction pathway. Finally, mutants of many other putative electron carriers have no clear phenotype, which suggests that they are not important under our growth conditions, although we cannot rule out genetic redundancy.
硫酸盐还原菌在全球碳和硫循环中发挥着重要作用,但目前尚不清楚硫酸盐还原是如何产生能量的。为了确定能量守恒的遗传基础,我们在12种不同的电子供体和受体组合中培养阿拉斯加脱硫弧菌G20的数千个混合突变体,并测定了它们的适应性。我们发现,每当底物水平磷酸化无法进行时,铁氧化还原蛋白:NADH氧化还原酶Rnf进行的离子泵浦就必不可少。未被表征的复合物Hdr/flox-1(Dde_1207:13)有时与Rnf一起发挥重要作用,可能通过电子歧化作用从NADH生成更多还原态的铁氧化还原蛋白,从而允许进一步的离子泵浦。同样,在苹果酸或富马酸氧化过程中,电子歧化转氢酶NfnAB-2(Dde_1250:1)也很重要,可能会生成还原态的铁氧化还原蛋白,以便Rnf进行额外的离子泵浦。在甲酸氧化过程中,需要周质[NiFeSe]氢化酶HysAB,这表明氢气在周质中形成,扩散到细胞质中,并用于还原铁氧化还原蛋白,从而为Rnf提供底物。在氢气利用过程中,跨膜电子传递复合物Tmc很重要,可能会将电子从周质转移到细胞质亚硫酸盐还原途径中。最后,许多其他假定的电子载体突变体没有明显的表型,这表明它们在我们的生长条件下并不重要,尽管我们不能排除基因冗余的可能性。