端粒位置效应:随着端粒在长距离上逐渐缩短对基因表达的调控。

Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances.

作者信息

Robin Jérôme D, Ludlow Andrew T, Batten Kimberly, Magdinier Frédérique, Stadler Guido, Wagner Kathyrin R, Shay Jerry W, Wright Woodring E

机构信息

Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;

UMRS 910, INSERM, Aix Marseille University, Marseille 13385 Cedex 05 France;

出版信息

Genes Dev. 2014 Nov 15;28(22):2464-76. doi: 10.1101/gad.251041.114.

Abstract

While global chromatin conformation studies are emerging, very little is known about the chromatin conformation of human telomeres. Most studies have focused on the role of telomeres as a tumor suppressor mechanism. Here we describe how telomere length regulates gene expression long before telomeres become short enough to produce a DNA damage response (senescence). We directly mapped the interactions adjacent to specific telomere ends using a Hi-C (chromosome capture followed by high-throughput sequencing) technique modified to enrich for specific genomic regions. We demonstrate that chromosome looping brings the telomere close to genes up to 10 Mb away from the telomere when telomeres are long and that the same loci become separated when telomeres are short. Furthermore, expression array analysis reveals that many loci, including noncoding RNAs, may be regulated by telomere length. We report three genes (ISG15 [interferon-stimulated gene 15 kd], DSP [Desmoplakin], and C1S [complement component 1s subcomplement]) located at three different subtelomeric ends (1p, 6p, and 12p) whose expressions are altered with telomere length. Additionally, we confirmed by in situ analysis (3D-FISH [three-dimensional fluorescence in situ hybridization]) that chromosomal looping occurs between the loci of those genes and their respective telomere ends. We term this process TPE-OLD for "telomere position effect over long distances." Our results suggest a potential novel mechanism for how telomere shortening could contribute to aging and disease initiation/progression in human cells long before the induction of a critical DNA damage response.

摘要

尽管全球范围内关于染色质构象的研究正在兴起,但对于人类端粒的染色质构象却知之甚少。大多数研究都集中在端粒作为一种肿瘤抑制机制的作用上。在此,我们描述了端粒长度如何在端粒变得短到足以产生DNA损伤反应(衰老)之前很久就调节基因表达。我们使用一种经过改良以富集特定基因组区域的Hi-C(染色体捕获后进行高通量测序)技术,直接绘制了与特定端粒末端相邻的相互作用图谱。我们证明,当端粒较长时,染色体环化会使端粒靠近距离端粒达10 Mb远的基因,而当端粒较短时,相同的基因座会分开。此外,表达阵列分析表明,许多基因座,包括非编码RNA,可能受端粒长度调控。我们报告了位于三个不同亚端粒末端(1p、6p和12p)的三个基因(ISG15 [干扰素刺激基因15 kd]、DSP [桥粒斑蛋白]和C1S [补体成分1s亚成分]),它们的表达随端粒长度而改变。此外,我们通过原位分析(三维荧光原位杂交)证实,在这些基因的基因座与其各自的端粒末端之间发生了染色体环化。我们将这个过程称为TPE-OLD,即“远距离端粒位置效应”。我们的结果提示了一种潜在的新机制,即端粒缩短如何在关键DNA损伤反应诱导之前很久就可能导致人类细胞衰老和疾病起始/进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6ae/4233240/f7dfafc43fd2/2464fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索