Suppr超能文献

超级稳定同位素标记氨基酸定量蛋白质组学技术(Super-SILAC):当前趋势与未来展望。

Super-SILAC: current trends and future perspectives.

作者信息

Shenoy Anjana, Geiger Tamar

机构信息

Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.

出版信息

Expert Rev Proteomics. 2015 Feb;12(1):13-9. doi: 10.1586/14789450.2015.982538. Epub 2014 Nov 18.

Abstract

Stable isotope labeling with amino acids in cell culture (SILAC) has risen as a powerful quantification technique in mass spectrometry (MS)-based proteomics in classical and modified forms. Previously, SILAC was limited to cultured cells because of the requirement of active protein synthesis; however, in recent years, it was expanded to model organisms and tissue samples. Specifically, the super-SILAC technique uses a mixture of SILAC-labeled cells as a spike-in standard for accurate quantification of unlabeled samples, thereby enabling quantification of human tissue samples. Here, we highlight the recent developments in super-SILAC and its application to the study of clinical samples, secretomes, post-translational modifications and organelle proteomes. Finally, we propose super-SILAC as a robust and accurate method that can be commercialized and applied to basic and clinical research.

摘要

细胞培养中氨基酸稳定同位素标记(SILAC)已成为基于质谱(MS)的蛋白质组学中一种强大的定量技术,有经典和改良等形式。以前,由于需要活跃的蛋白质合成,SILAC仅限于培养细胞;然而,近年来,它已扩展到模式生物和组织样本。具体而言,超级SILAC技术使用SILAC标记细胞的混合物作为内标,用于准确量化未标记样本,从而能够对人体组织样本进行定量分析。在此,我们重点介绍超级SILAC的最新进展及其在临床样本、分泌蛋白质组、翻译后修饰和细胞器蛋白质组研究中的应用。最后,我们提出超级SILAC是一种稳健且准确的方法,可实现商业化并应用于基础研究和临床研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验