Suppr超能文献

离体小鼠肠道隐窝类器官培养物中代谢谱的实时分析

Real time analysis of metabolic profile in ex vivo mouse intestinal crypt organoid cultures.

作者信息

Bas Tuba, Augenlicht Leonard H

机构信息

Department of Medicine, Albert Einstein College of Medicine;

Department of Medicine, Albert Einstein College of Medicine; Department of Cell Biology, Albert Einstein College of Medicine.

出版信息

J Vis Exp. 2014 Nov 3(93):e52026. doi: 10.3791/52026.

Abstract

The small intestinal mucosa exhibits a repetitive architecture organized into two fundamental structures: villi, projecting into the intestinal lumen and composed of mature enterocytes, goblet cells and enteroendocrine cells; and crypts, residing proximal to the submucosa and the muscularis, harboring adult stem and progenitor cells and mature Paneth cells, as well as stromal and immune cells of the crypt microenvironment. Until the last few years, in vitro studies of small intestine was limited to cell lines derived from either benign or malignant tumors, and did not represent the physiology of normal intestinal epithelia and the influence of the microenvironment in which they reside. Here, we demonstrate a method adapted from Sato et al. (2009) for culturing primary mouse intestinal crypt organoids derived from C57BL/6 mice. In addition, we present the use of crypt organoid cultures to assay the crypt metabolic profile in real time by measurement of basal oxygen consumption, glycolytic rate, ATP production and respiratory capacity. Organoids maintain properties defined by their source and retain aspects of their metabolic adaptation reflected by oxygen consumption and extracellular acidification rates. Real time metabolic studies in this crypt organoid culture system are a powerful tool to study crypt organoid energy metabolism, and how it can be modulated by nutritional and pharmacological factors.

摘要

小肠黏膜呈现出一种重复的结构,由两种基本结构组成:绒毛,伸入肠腔,由成熟的肠上皮细胞、杯状细胞和肠内分泌细胞组成;隐窝,位于黏膜下层和肌层近端,含有成体干细胞和祖细胞、成熟的潘氏细胞,以及隐窝微环境中的基质细胞和免疫细胞。直到最近几年,小肠的体外研究仅限于源自良性或恶性肿瘤的细胞系,并不代表正常肠上皮的生理学以及它们所处微环境的影响。在此,我们展示了一种改编自佐藤等人(2009年)的方法,用于培养源自C57BL/6小鼠的原代小鼠肠隐窝类器官。此外,我们介绍了使用隐窝类器官培养物通过测量基础耗氧率、糖酵解速率、ATP生成量和呼吸能力来实时测定隐窝代谢谱。类器官保持由其来源定义的特性,并保留由耗氧率和细胞外酸化率反映的代谢适应性方面。在这种隐窝类器官培养系统中进行的实时代谢研究是研究隐窝类器官能量代谢以及它如何受营养和药理因素调节的有力工具。

相似文献

2
Nutrient sensing by absorptive and secretory progenies of small intestinal stem cells.
Am J Physiol Gastrointest Liver Physiol. 2017 Jun 1;312(6):G592-G605. doi: 10.1152/ajpgi.00416.2016. Epub 2017 Mar 23.
3
Interplay between metabolic identities in the intestinal crypt supports stem cell function.
Nature. 2017 Mar 16;543(7645):424-427. doi: 10.1038/nature21673. Epub 2017 Mar 8.
4
Primary Intestinal Epithelial Organoid Culture.
Methods Mol Biol. 2020;2171:185-200. doi: 10.1007/978-1-0716-0747-3_11.
5
Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration.
Nature. 2015 Dec 24;528(7583):560-564. doi: 10.1038/nature16460. Epub 2015 Dec 9.
6
pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3173-E3181. doi: 10.1073/pnas.1713510115. Epub 2018 Mar 20.
10
On the biomechanics of stem cell niche formation in the gut--modelling growing organoids.
FEBS J. 2012 Sep;279(18):3475-87. doi: 10.1111/j.1742-4658.2012.08646.x. Epub 2012 Jun 18.

引用本文的文献

1
Recent advances in organoid development and applications in disease modeling.
Biochim Biophys Acta Rev Cancer. 2021 Apr;1875(2):188527. doi: 10.1016/j.bbcan.2021.188527. Epub 2021 Feb 26.
4
Intestinal basolateral lipid substrate transport is linked to chylomicron secretion and is regulated by apoC-III.
J Lipid Res. 2019 Sep;60(9):1503-1515. doi: 10.1194/jlr.M092460. Epub 2019 May 31.
5
Integration of Sensors in Gastrointestinal Organoid Culture for Biological Analysis.
Cell Mol Gastroenterol Hepatol. 2018 Mar 26;6(1):123-131.e1. doi: 10.1016/j.jcmgh.2018.03.002. eCollection 2018.
6
Drug Discovery via Human-Derived Stem Cell Organoids.
Front Pharmacol. 2016 Sep 22;7:334. doi: 10.3389/fphar.2016.00334. eCollection 2016.
7
An enduring role for quiescent stem cells.
Dev Dyn. 2016 Jul;245(7):718-26. doi: 10.1002/dvdy.24416. Epub 2016 Jun 1.
8
Protein-engineered scaffolds for in vitro 3D culture of primary adult intestinal organoids.
Biomater Sci. 2015 Oct 15;3(10):1376-85. doi: 10.1039/c5bm00108k. Epub 2015 Jul 16.
9
A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells.
Am J Physiol Gastrointest Liver Physiol. 2015 Jul 1;309(1):G1-9. doi: 10.1152/ajpgi.00052.2015. Epub 2015 May 14.

本文引用的文献

1
Metabolic changes in cancer cells upon suppression of MYC.
Cancer Metab. 2013 Feb 4;1(1):7. doi: 10.1186/2049-3002-1-7.
2
Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications.
Science. 2013 Jun 7;340(6137):1190-4. doi: 10.1126/science.1234852.
4
mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake.
Nature. 2012 Jun 28;486(7404):490-5. doi: 10.1038/nature11163.
5
Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro.
Gastroenterology. 2010 Mar;138(3):1012-21.e1-5. doi: 10.1053/j.gastro.2009.11.052. Epub 2009 Dec 4.
6
Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.
Nature. 2009 May 14;459(7244):262-5. doi: 10.1038/nature07935. Epub 2009 Mar 29.
7
Cancer statistics, 2008.
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
8
Glutamine metabolism in Ehrlich ascites-carcinoma cells.
Biochem J. 1962 May;83(2):284-91. doi: 10.1042/bj0830284.
9
On the origin of cancer cells.
Science. 1956 Feb 24;123(3191):309-14. doi: 10.1126/science.123.3191.309.
10
Eating patterns and risk of colon cancer.
Am J Epidemiol. 1998 Jul 1;148(1):4-16. doi: 10.1093/aje/148.1.4-a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验