Suppr超能文献

小肠干细胞的吸收性和分泌性子代对营养物质的感知

Nutrient sensing by absorptive and secretory progenies of small intestinal stem cells.

作者信息

Kishida Kunihiro, Pearce Sarah C, Yu Shiyan, Gao Nan, Ferraris Ronaldo P

机构信息

Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey; and.

Department of Biological Sciences, Life Science Center, Rutgers University, Newark, New Jersey.

出版信息

Am J Physiol Gastrointest Liver Physiol. 2017 Jun 1;312(6):G592-G605. doi: 10.1152/ajpgi.00416.2016. Epub 2017 Mar 23.

Abstract

Nutrient sensing triggers responses by the gut-brain axis modulating hormone release, feeding behavior and metabolism that become dysregulated in metabolic syndrome and some cancers. Except for absorptive enterocytes and secretory enteroendocrine cells, the ability of many intestinal cell types to sense nutrients is still unknown; hence we hypothesized that progenitor stem cells (intestinal stem cells, ISC) possess nutrient sensing ability inherited by progenies during differentiation. We directed via modulators of Wnt and Notch signaling differentiation of precursor mouse intestinal crypts into specialized organoids each containing ISC, enterocyte, goblet, or Paneth cells at relative proportions much higher than in situ as determined by mRNA expression and immunocytochemistry of cell type biomarkers. We identified nutrient sensing cell type(s) by increased expression of fructolytic genes in response to a fructose challenge. Organoids comprised primarily of enterocytes, Paneth, or goblet, but not ISC, cells responded specifically to fructose without affecting nonfructolytic genes. Sensing was independent of Wnt and Notch modulators and of glucose concentrations in the medium but required fructose absorption and metabolism. More mature enterocyte- and goblet-enriched organoids exhibited stronger fructose responses. Remarkably, enterocyte organoids, upon forced dedifferentiation to reacquire ISC characteristics, exhibited a markedly extended lifespan and retained fructose sensing ability, mimicking responses of some dedifferentiated cancer cells. Using an innovative approach, we discovered that nutrient sensing is likely repressed in progenitor ISCs then irreversibly derepressed during specification into sensing-competent absorptive or secretory lineages, the surprising capacity of Paneth and goblet cells to detect fructose, and the important role of differentiation in modulating nutrient sensing. Small intestinal stem cells differentiate into several cell types transiently populating the villi. We used specialized organoid cultures each comprised of a single cell type to demonstrate that ) differentiation seems required for nutrient sensing, ) secretory goblet and Paneth cells along with enterocytes sense fructose, suggesting that sensing is acquired after differentiation is triggered but before divergence between absorptive and secretory lineages, and ) forcibly dedifferentiated enterocytes exhibit fructose sensing and lifespan extension.

摘要

营养感知通过肠-脑轴触发反应,调节激素释放、摄食行为和新陈代谢,而这些在代谢综合征和某些癌症中会失调。除了吸收性肠上皮细胞和分泌性肠内分泌细胞外,许多肠道细胞类型感知营养的能力仍不为人知;因此,我们推测祖细胞干细胞(肠道干细胞,ISC)具有在分化过程中传递给后代的营养感知能力。我们通过Wnt和Notch信号通路的调节剂,将小鼠肠道隐窝前体细胞定向分化为特殊的类器官,每个类器官都含有ISC、肠上皮细胞、杯状细胞或潘氏细胞,其相对比例远高于原位,这是通过细胞类型生物标志物的mRNA表达和免疫细胞化学确定的。我们通过果糖刺激后糖酵解基因表达的增加来鉴定营养感知细胞类型。主要由肠上皮细胞、潘氏细胞或杯状细胞而非ISC细胞组成的类器官对果糖有特异性反应,而不影响非糖酵解基因。这种感知独立于Wnt和Notch调节剂以及培养基中的葡萄糖浓度,但需要果糖吸收和代谢。更成熟的富含肠上皮细胞和杯状细胞的类器官对果糖的反应更强。值得注意的是,肠上皮细胞类器官在被迫去分化以重新获得ISC特征后,表现出明显延长的寿命并保留果糖感知能力,类似于一些去分化癌细胞的反应。通过一种创新方法,我们发现营养感知在祖细胞ISC中可能受到抑制,然后在分化为有感知能力的吸收性或分泌性谱系的过程中不可逆地去抑制,潘氏细胞和杯状细胞检测果糖的惊人能力,以及分化在调节营养感知中的重要作用。小肠干细胞分化为几种短暂填充绒毛的细胞类型。我们使用每种由单一细胞类型组成的特殊类器官培养物来证明:(1)营养感知似乎需要分化;(2)分泌性杯状细胞、潘氏细胞以及肠上皮细胞能感知果糖,这表明感知是在分化触发后但在吸收性和分泌性谱系分化之前获得的;(3)被迫去分化的肠上皮细胞表现出果糖感知和寿命延长。

相似文献

1
Nutrient sensing by absorptive and secretory progenies of small intestinal stem cells.
Am J Physiol Gastrointest Liver Physiol. 2017 Jun 1;312(6):G592-G605. doi: 10.1152/ajpgi.00416.2016. Epub 2017 Mar 23.
2
The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium.
Gastroenterology. 2009 Oct;137(4):1333-45.e1-3. doi: 10.1053/j.gastro.2009.06.044. Epub 2009 Jun 21.
3
mTOR disruption causes intestinal epithelial cell defects and intestinal atrophy postinjury in mice.
FASEB J. 2016 Mar;30(3):1263-75. doi: 10.1096/fj.15-278606. Epub 2015 Nov 30.
5
Requirement of Math1 for secretory cell lineage commitment in the mouse intestine.
Science. 2001 Dec 7;294(5549):2155-8. doi: 10.1126/science.1065718.
7
Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK.
Am J Physiol Regul Integr Comp Physiol. 2015 Sep;309(5):R499-509. doi: 10.1152/ajpregu.00128.2015. Epub 2015 Jun 17.
8
BHLHA15-Positive Secretory Precursor Cells Can Give Rise to Tumors in Intestine and Colon in Mice.
Gastroenterology. 2019 Mar;156(4):1066-1081.e16. doi: 10.1053/j.gastro.2018.11.024. Epub 2018 Nov 15.
9
NF-κB determines Paneth versus goblet cell fate decision in the small intestine.
Development. 2021 Nov 1;148(21). doi: 10.1242/dev.199683. Epub 2021 Nov 9.

引用本文的文献

1
Paneth Cells: Dispensable yet Irreplaceable for the Intestinal Stem Cell Niche.
Cell Mol Gastroenterol Hepatol. 2025;19(4):101443. doi: 10.1016/j.jcmgh.2024.101443. Epub 2024 Dec 19.
2
Sensing of luminal contents and downstream modulation of GI function.
JGH Open. 2024 May 22;8(5):e13083. doi: 10.1002/jgh3.13083. eCollection 2024 May.
3
GLUT5: structure, functions, diseases and potential applications.
Acta Biochim Biophys Sin (Shanghai). 2023 Oct 25;55(10):1519-1538. doi: 10.3724/abbs.2023158.
4
Culture media and format alter cellular composition and barrier integrity of porcine colonoid-derived monolayers.
Tissue Barriers. 2024 Apr 2;12(2):2222632. doi: 10.1080/21688370.2023.2222632. Epub 2023 Jun 21.
5
The intestine is a major contributor to circulating succinate in mice.
FASEB J. 2022 Oct;36(10):e22546. doi: 10.1096/fj.202200135RR.
6
Human iPSC colon organoid function is improved by exposure to fecal fermentates.
FASEB Bioadv. 2022 Apr 12;4(7):468-484. doi: 10.1096/fba.2021-00166. eCollection 2022 Jul.
7
9
Fucoidans and Bowel Health.
Mar Drugs. 2021 Jul 30;19(8):436. doi: 10.3390/md19080436.
10
Intestinal organoid-based 2D monolayers mimic physiological and pathophysiological properties of the pig intestine.
PLoS One. 2021 Aug 23;16(8):e0256143. doi: 10.1371/journal.pone.0256143. eCollection 2021.

本文引用的文献

1
Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool.
Cancer Metab. 2016 Jun 6;4:11. doi: 10.1186/s40170-016-0151-y. eCollection 2016.
2
Organoid Models of Human Gastrointestinal Development and Disease.
Gastroenterology. 2016 May;150(5):1098-1112. doi: 10.1053/j.gastro.2015.12.042. Epub 2016 Jan 14.
3
ADAM Proteases and Gastrointestinal Function.
Annu Rev Physiol. 2016;78:243-76. doi: 10.1146/annurev-physiol-021014-071720. Epub 2015 Nov 19.
6
Mini-gut organoids: reconstitution of the stem cell niche.
Annu Rev Cell Dev Biol. 2015;31:269-89. doi: 10.1146/annurev-cellbio-100814-125218. Epub 2015 Oct 2.
7
Effect of dietary fructose on portal and systemic serum fructose levels in rats and in KHK-/- and GLUT5-/- mice.
Am J Physiol Gastrointest Liver Physiol. 2015 Nov 1;309(9):G779-90. doi: 10.1152/ajpgi.00188.2015. Epub 2015 Aug 27.
8
Fructose-induced increases in expression of intestinal fructolytic and gluconeogenic genes are regulated by GLUT5 and KHK.
Am J Physiol Regul Integr Comp Physiol. 2015 Sep;309(5):R499-509. doi: 10.1152/ajpregu.00128.2015. Epub 2015 Jun 17.
9
Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption.
FASEB J. 2015 Sep;29(9):4046-58. doi: 10.1096/fj.15-272195. Epub 2015 Jun 12.
10
The role of fructose in metabolism and cancer.
Horm Mol Biol Clin Investig. 2015 May;22(2):79-89. doi: 10.1515/hmbci-2015-0009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验