Ji Jing, Baart Sophie, Vikulina Anna S, Clark Robert Sb, Anthonymuthu Tamil S, Tyurin Vladimir A, Du Lina, St Croix Claudette M, Tyurina Yulia Y, Lewis Jesse, Skoda Erin M, Kline Anthony E, Kochanek Patrick M, Wipf Peter, Kagan Valerian E, Bayır Hülya
1] Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA [2] Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA [3] Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA [4] Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, USA [5] Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
1] Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA [2] Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA [3] Medical School at VU Medical Centre, Amsterdam, The Netherlands.
J Cereb Blood Flow Metab. 2015 Feb;35(2):319-28. doi: 10.1038/jcbfm.2014.204. Epub 2014 Nov 19.
It is believed that biosynthesis of lipid mediators in the central nervous system after cerebral ischemia-reperfusion starts with phospholipid hydrolysis by calcium-dependent phospholipases and is followed by oxygenation of released fatty acids (FAs). Here, we report an alternative pathway whereby cereberal ischemia-reperfusion triggered oxygenation of a mitochondria-specific phospholipid, cardiolipin (CL), is followed by its hydrolysis to yield monolyso-CLs and oxygenated derivatives of fatty (linoleic) acids. We used a model of global cerebral ischemia-reperfusion characterized by 9 minutes of asphyxia leading to asystole followed by cardiopulmonary resuscitation in postnatal day 17 rats. Global ischemia and cardiopulmonary resuscitation resulted in: (1) selective oxidation and hydrolysis of CLs, (2) accumulation of lyso-CLs and oxygenated free FAs, (3) activation of caspase 3/7 in the brain, and (4) motor and cognitive dysfunction. On the basis of these findings, we used a mitochondria targeted nitroxide electron scavenger, which prevented CL oxidation and subsequent hydrolysis, attenuated caspase activation, and improved neurocognitive outcome when administered after cardiac arrest. These data show that calcium-independent CL oxidation and subsequent hydrolysis represent a previously unidentified pathogenic mechanism of brain injury incurred by ischemia-reperfusion and a clinically relevant therapeutic target.
据信,脑缺血再灌注后中枢神经系统中脂质介质的生物合成始于钙依赖性磷脂酶对磷脂的水解,随后是释放的脂肪酸(FAs)的氧化。在此,我们报告了一条替代途径,即脑缺血再灌注引发线粒体特异性磷脂心磷脂(CL)的氧化,随后其水解产生单溶血-CLs和脂肪酸(亚油酸)的氧化衍生物。我们使用了一种全脑缺血再灌注模型,其特征为在出生后第17天的大鼠中,9分钟的窒息导致心搏停止,随后进行心肺复苏。全脑缺血和心肺复苏导致:(1)CLs的选择性氧化和水解;(2)溶血-CLs和氧化游离FAs的积累;(3)大脑中caspase 3/7的激活;以及(4)运动和认知功能障碍。基于这些发现,我们使用了一种线粒体靶向的氮氧化物电子清除剂,在心脏骤停后给药时,它可防止CL氧化及随后的水解,减弱caspase激活,并改善神经认知结果。这些数据表明,不依赖钙的CL氧化及随后的水解代表了缺血再灌注所致脑损伤一种先前未被识别的致病机制以及一个具有临床相关性的治疗靶点。