Suppr超能文献

硅表面量子自旋霍尔态的形成以及能隙随自旋轨道耦合强度的标度关系。

Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling.

作者信息

Zhou Miao, Ming Wenmei, Liu Zheng, Wang Zhengfei, Yao Yugui, Liu Feng

机构信息

Department of Materials Science and Engineering, University of Utah, UT 84112.

School of Physics, Beijing Institute of Technology, Beijing, China 100081.

出版信息

Sci Rep. 2014 Nov 19;4:7102. doi: 10.1038/srep07102.

Abstract

For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥ 0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

摘要

对于自旋电子学和量子计算中的潜在应用而言,期望在保持大的能隙的同时,将量子自旋霍尔绝缘体[即二维拓扑绝缘体(TI)]放置在衬底上。在此,我们基于第一性原理计算和有效哈密顿量分析,展示了一种在半导体表面创建大间隙二维TI态的独特方法。我们表明,当具有强自旋轨道耦合(SOC)的重元素如Bi和Pb原子沉积在图案化的H-Si(111)表面上形成六边形晶格时,它们会呈现出能隙≥0.5 eV的二维TI态。该TI态源于一种有趣的衬底轨道滤波效应,该效应在费米能级附近选择合适的轨道组成,从而使系统能够匹配到一个四能带有效模型哈密顿量上。此外,发现在该模型中,SOC能隙并不随SOC强度的增加而单调增加。这些有趣的结果可能会为未来大间隙拓扑量子态的设计和制造提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79f4/4236754/0719272ecf29/srep07102-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验