Ravera Emiliano Pablo, Crespo Marcos José, Braidot Ariel Andrés Antonio
a Laboratory of Biomechanics, School of Engineering, National University of Entre Ríos , Provincial Route 11 Km. 10, Oro Verde 3100 , Argentina.
b National Council of Scientific and Technical Research , Buenos Aires , Argentina.
Comput Methods Biomech Biomed Engin. 2016;19(1):1-12. doi: 10.1080/10255842.2014.980820. Epub 2014 Nov 19.
Clinical gait analysis provides great contributions to the understanding of gait patterns. However, a complete distribution of muscle forces throughout the gait cycle is a current challenge for many researchers. Two techniques are often used to estimate muscle forces: inverse dynamics with static optimization and computer muscle control that uses forward dynamics to minimize tracking. The first method often involves limitations due to changing muscle dynamics and possible signal artefacts that depend on day-to-day variation in the position of electromyographic (EMG) electrodes. Nevertheless, in clinical gait analysis, the method of inverse dynamics is a fundamental and commonly used computational procedure to calculate the force and torque reactions at various body joints. Our aim was to develop a generic musculoskeletal model that could be able to be applied in the clinical setting. The musculoskeletal model of the lower limb presents a simulation for the EMG data to address the common limitations of these techniques. This model presents a new point of view from the inverse dynamics used on clinical gait analysis, including the EMG information, and shows a similar performance to another model available in the OpenSim software. The main problem of these methods to achieve a correct muscle coordination is the lack of complete EMG data for all muscles modelled. We present a technique that simulates the EMG activity and presents a good correlation with the muscle forces throughout the gait cycle. Also, this method showed great similarities whit the real EMG data recorded from the subjects doing the same movement.
临床步态分析对理解步态模式有很大贡献。然而,在整个步态周期中完整地分布肌肉力量是当前许多研究人员面临的挑战。通常使用两种技术来估计肌肉力量:静态优化的逆动力学和使用正向动力学以最小化跟踪的计算机肌肉控制。第一种方法由于肌肉动力学的变化以及可能依赖于肌电图(EMG)电极位置的日常变化的信号伪影而常常存在局限性。尽管如此,在临床步态分析中,逆动力学方法是计算身体各个关节处的力和扭矩反应的基本且常用的计算程序。我们的目标是开发一种能够应用于临床环境的通用肌肉骨骼模型。下肢的肌肉骨骼模型对EMG数据进行了模拟,以解决这些技术的常见局限性。该模型从临床步态分析中使用的逆动力学角度提出了一个新观点,包括EMG信息,并显示出与OpenSim软件中可用的另一个模型相似的性能。这些方法实现正确肌肉协调的主要问题是缺乏针对所有建模肌肉的完整EMG数据。我们提出了一种模拟EMG活动的技术,该技术在整个步态周期中与肌肉力量具有良好的相关性。此外,该方法与从进行相同运动的受试者记录的真实EMG数据显示出极大的相似性。