Suppr超能文献

使用正向-逆向动力学模型估计肌肉力量和关节力矩。

Estimation of muscle forces and joint moments using a forward-inverse dynamics model.

作者信息

Buchanan Thomas S, Lloyd David G, Manal Kurt, Besier Thor F

机构信息

Center for Biomedical Engineering Research, Department of Mechanical Engineering, University of Delaware, Newark, 19716, USA.

出版信息

Med Sci Sports Exerc. 2005 Nov;37(11):1911-6. doi: 10.1249/01.mss.0000176684.24008.6f.

Abstract

PURPOSE

This paper presents a forward dynamic neuromusculoskeletal model that can be used to estimate and predict joint moments and muscle forces. It uses EMG signals as inputs to the model, and joint moments predicted are verified through inverse dynamics. The aim of the model is to estimate or predict muscle forces about a joint, which can be used to estimate the corresponding joint compressive forces, and/or ligament forces in healthy and impaired subjects, based on the way they activate their muscles.

METHODS

The estimation of joint moments requires three steps. In the first step, muscle activation dynamics govern the transformation from the EMG signal to a measure of muscle activation--a time-varying parameter between 0 and 1. In the second step, muscle contraction dynamics characterize how muscle activations are transformed into muscle forces. The final step requires a model of the musculoskeletal geometry to transform muscle forces to joint moments. Each of these steps involves complex, nonlinear relationships.

RESULTS

An application is provided to demonstrate how this model can be used to study the forces in the healthy ankle during dynamometer trials and during gait. The model-predicted estimates of joint moment were found to match experimentally determined values closely.

CONCLUSION

Neuromusculoskeletal models that use EMG as inputs can be employed to accurately estimate joint moments. The muscle forces predicted from these models can be used to better understand tissue loading in joints, and to provide in vivo estimates of tensile ligament forces and compressive cartilage loads during dynamic tasks. This tool has great potential for aiding in the study of injury mechanisms in sports.

摘要

目的

本文提出了一种正向动力学神经肌肉骨骼模型,可用于估计和预测关节力矩和肌肉力量。该模型将肌电图(EMG)信号作为输入,并通过逆动力学对预测的关节力矩进行验证。该模型的目的是估计或预测关节周围的肌肉力量,基于健康和受损受试者激活肌肉的方式,可用于估计相应的关节压缩力和/或韧带力量。

方法

关节力矩的估计需要三个步骤。第一步,肌肉激活动力学控制从EMG信号到肌肉激活度量的转换——一个介于0和1之间的随时间变化的参数。第二步,肌肉收缩动力学描述肌肉激活如何转化为肌肉力量。最后一步需要一个肌肉骨骼几何模型将肌肉力量转化为关节力矩。这些步骤中的每一步都涉及复杂的非线性关系。

结果

给出了一个应用实例,以说明该模型如何用于研究测力计试验和步态期间健康踝关节的受力情况。发现模型预测的关节力矩估计值与实验确定的值非常匹配。

结论

以EMG作为输入的神经肌肉骨骼模型可用于准确估计关节力矩。从这些模型预测的肌肉力量可用于更好地理解关节中的组织负荷,并在动态任务期间提供体内韧带拉力和软骨压缩负荷的估计值。该工具在辅助研究运动损伤机制方面具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验