Atefi Ehsan, Lemmo Stephanie, Fyffe Darcy, Luker Gary D, Tavana Hossein
Department of Biomedical Engineering, The University of Akron, Akron, OH 44325 USA.
Department of Radiology, University of Michigan, Ann Arbor, MI 48105 USA ; Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48105 USA ; Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105 USA.
Adv Funct Mater. 2014 Nov 5;24(41):6509-6515. doi: 10.1002/adfm.201401302.
This paper presents a new 3D culture microtechnology for high throughput production of tumor spheroids and validates its utility for screening anti-cancer drugs. We use two immiscible polymeric aqueous solutions and microprint a submicroliter drop of the "patterning" phase containing cells into a bath of the "immersion" phase. Selecting proper formulations of biphasic systems using a panel of biocompatible polymers results in the formation of a round drop that confines cells to facilitate spontaneous formation of a spheroid without any external stimuli. Adapting this approach to robotic tools enables straightforward generation and maintenance of spheroids of well-defined size in standard microwell plates and biochemical analysis of spheroids , which is not possible with existing techniques for spheroid culture. To enable high throughput screening, we establish a phase diagram to identify minimum cell densities within specific volumes of the patterning drop to result in a single spheroid. Spheroids show normal growth over long-term incubation and dose-dependent decrease in cellular viability when treated with drug compounds, but present significant resistance compared to monolayer cultures. The unprecedented ease of implementing this microtechnology and its robust performance will benefit high throughput studies of drug screening against cancer cells with physiologically-relevant 3D tumor models.
本文介绍了一种用于高通量生产肿瘤球体的新型3D培养微技术,并验证了其在筛选抗癌药物方面的实用性。我们使用两种互不相溶的聚合物水溶液,将含有细胞的亚微升“图案化”相液滴微打印到“浸没”相的浴液中。使用一组生物相容性聚合物选择合适的双相系统配方,会形成一个圆形液滴,将细胞限制在其中,从而在没有任何外部刺激的情况下促进球体的自发形成。将这种方法应用于机器人工具,可以在标准微孔板中直接生成和维持大小明确的球体,并对球体进行生化分析,而现有的球体培养技术无法做到这一点。为了实现高通量筛选,我们建立了一个相图,以确定图案化液滴特定体积内导致单个球体形成的最小细胞密度。球体在长期培养中显示出正常生长,在用药物化合物处理时细胞活力呈剂量依赖性下降,但与单层培养相比具有显著的抗性。这种微技术前所未有的易于实施及其强大的性能,将有利于使用生理相关的3D肿瘤模型对癌细胞进行高通量药物筛选研究。