Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
Departamento de Química, CICECO and Secção Autónoma de Ciências da Saúde, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
Nat Chem. 2014 Dec;6(12):1039-43. doi: 10.1038/nchem.2111. Epub 2014 Nov 17.
Halogen bonding (XB), the attractive interaction between an electron-deficient halogen atom and a Lewis base, has undergone a dramatic development as an intermolecular force analogous to hydrogen bonding (HB). However, its utilization in the solution phase remains underdeveloped. Furthermore, the design of receptors capable of strong and selective recognition of anions in water remains a significant challenge. Here we demonstrate the superiority of halogen bonding over hydrogen bonding for strong anion binding in water, to the extent that halide recognition by a simple acyclic mono-charged receptor is achievable. Quantification of iodide binding by rotaxane hosts reveals the strong binding by the XB-rotaxane is driven exclusively by favourable enthalpic contributions arising from the halogen-bonding interactions, whereas weaker association with the HB-rotaxanes is entropically driven. These observations demonstrate the unique nature of halogen bonding in water as a strong alternative interaction to the ubiquitous hydrogen bonding in molecular recognition and assembly.
卤键(XB),即缺电子卤原子与路易斯碱之间的吸引相互作用,作为一种类似于氢键(HB)的分子间作用力,经历了显著的发展。然而,其在溶液相中的应用仍未得到充分发展。此外,设计能够在水中对阴离子进行强选择性识别的受体仍然是一个重大挑战。在这里,我们证明了卤键在水中对阴离子的强结合能力优于氢键,以至于简单的非环状单电荷受体就可以实现卤化物的识别。轮烷主体对碘化物结合的定量研究表明,XB-轮烷的强结合完全是由卤键相互作用产生的有利焓贡献驱动的,而与 HB-轮烷的较弱结合则是由熵驱动的。这些观察结果表明,卤键在水中作为一种普遍存在的氢键的强替代相互作用,在分子识别和组装中具有独特的性质。