Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
Friedrich-Schiller-Universität Jena, Institut für Pharmazie, Philosophenweg 14, 07743 Jena, Germany.
Nat Chem. 2014 Dec;6(12):1072-8. doi: 10.1038/nchem.2095. Epub 2014 Nov 2.
Natural products have long been a source of useful biological activity for the development of new drugs. Their macromolecular targets are, however, largely unknown, which hampers rational drug design and optimization. Here we present the development and experimental validation of a computational method for the discovery of such targets. The technique does not require three-dimensional target models and may be applied to structurally complex natural products. The algorithm dissects the natural products into fragments and infers potential pharmacological targets by comparing the fragments to synthetic reference drugs with known targets. We demonstrate that this approach results in confident predictions. In a prospective validation, we show that fragments of the potent antitumour agent archazolid A, a macrolide from the myxobacterium Archangium gephyra, contain relevant information regarding its polypharmacology. Biochemical and biophysical evaluation confirmed the predictions. The results obtained corroborate the practical applicability of the computational approach to natural product 'de-orphaning'.
天然产物长期以来一直是开发新药的有用生物活性的来源。然而,它们的大分子靶标在很大程度上是未知的,这阻碍了合理的药物设计和优化。在这里,我们介绍了一种用于发现此类靶标的计算方法的开发和实验验证。该技术不需要三维目标模型,并且可以应用于结构复杂的天然产物。该算法将天然产物分解为片段,并通过将片段与具有已知靶标的合成参考药物进行比较来推断潜在的药理靶标。我们证明了这种方法可以得出可靠的预测。在前瞻性验证中,我们表明来自粘细菌Archangium gephyra 的大环内酯类抗肿瘤剂 archazolid A 的有效片段包含与其多药理学相关的信息。生化和生物物理评估证实了这些预测。所获得的结果证实了计算方法在天然产物“去孤儿化”方面的实际适用性。