Saldívar-González F I, Aldas-Bulos V D, Medina-Franco J L, Plisson F
DIFACQUIM Research Group, School of Chemistry, Department of Pharmacy, Universidad Nacional Autónoma de México Avenida Universidad 3000 04510 Mexico Mexico
Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del IPN Irapuato Guanajuato Mexico.
Chem Sci. 2021 Dec 13;13(6):1526-1546. doi: 10.1039/d1sc04471k. eCollection 2022 Feb 9.
Natural products (NPs) are primarily recognized as privileged structures to interact with protein drug targets. Their unique characteristics and structural diversity continue to marvel scientists for developing NP-inspired medicines, even though the pharmaceutical industry has largely given up. High-performance computer hardware, extensive storage, accessible software and affordable online education have democratized the use of artificial intelligence (AI) in many sectors and research areas. The last decades have introduced natural language processing and machine learning algorithms, two subfields of AI, to tackle NP drug discovery challenges and open up opportunities. In this article, we review and discuss the rational applications of AI approaches developed to assist in discovering bioactive NPs and capturing the molecular "patterns" of these privileged structures for combinatorial design or target selectivity.
天然产物(NPs)主要被认为是与蛋白质药物靶点相互作用的优势结构。尽管制药行业在很大程度上已放弃,但它们独特的特性和结构多样性仍不断令科学家们惊叹,促使他们开发受天然产物启发的药物。高性能计算机硬件、大容量存储、易用的软件以及经济实惠的在线教育,已使人工智能(AI)在许多行业和研究领域的应用变得普及。在过去几十年中,人工智能的两个子领域——自然语言处理和机器学习算法被引入,以应对天然产物药物发现的挑战并创造机会。在本文中,我们回顾并讨论了为协助发现生物活性天然产物以及捕捉这些优势结构的分子“模式”以进行组合设计或靶点选择性而开发的人工智能方法的合理应用。