Duchossois Family Institute, The University of Chicago, Chicago, IL, USA.
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
Nat Rev Drug Discov. 2023 Nov;22(11):895-916. doi: 10.1038/s41573-023-00774-7. Epub 2023 Sep 11.
Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.
计算组学技术的发展为探索天然产物的隐藏多样性提供了新的手段,为药物发现挖掘了新的潜力。与此同时,人工智能方法(如机器学习)在计算药物设计领域取得了令人兴奋的进展,为生物活性预测和针对感兴趣的分子靶点的从头药物设计提供了便利。在这里,我们描述了这些发展之间的当前和未来的协同作用,以有效地从自然界产生的大量分子中识别候选药物。我们还讨论了如何解决实现这些协同作用的潜力所面临的关键挑战,例如需要高质量数据集来训练深度学习算法,以及用于算法验证的适当策略。
Nat Rev Drug Discov. 2023-11
Chem Biol Drug Des. 2022-7
J Biomol Struct Dyn. 2024-4
Drug Discov Today. 2023-4
Nat Prod Rep. 2022-12-14
Nat Rev Clin Oncol. 2025-9-9
Int J Nanomedicine. 2025-8-29
Nat Prod Bioprospect. 2025-8-5
J Nat Prod. 2025-8-22
Nat Chem Biol. 2024-3
Nat Chem Biol. 2023-7
J Cheminform. 2023-1-6
J Chem Inf Model. 2022-12-12
Nucleic Acids Res. 2023-1-6