Suppr超能文献

用于基于机顶盒的智能电视的人脸识别系统。

Face recognition system for set-top box-based intelligent TV.

作者信息

Lee Won Oh, Kim Yeong Gon, Hong Hyung Gil, Park Kang Ryoung

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, 26 Pil-dong 3-ga, Jung-gu, Seoul 100-715, Korea.

出版信息

Sensors (Basel). 2014 Nov 18;14(11):21726-49. doi: 10.3390/s141121726.

Abstract

Despite the prevalence of smart TVs, many consumers continue to use conventional TVs with supplementary set-top boxes (STBs) because of the high cost of smart TVs. However, because the processing power of a STB is quite low, the smart TV functionalities that can be implemented in a STB are very limited. Because of this, negligible research has been conducted regarding face recognition for conventional TVs with supplementary STBs, even though many such studies have been conducted with smart TVs. In terms of camera sensors, previous face recognition systems have used high-resolution cameras, cameras with high magnification zoom lenses, or camera systems with panning and tilting devices that can be used for face recognition from various positions. However, these cameras and devices cannot be used in intelligent TV environments because of limitations related to size and cost, and only small, low cost web-cameras can be used. The resulting face recognition performance is degraded because of the limited resolution and quality levels of the images. Therefore, we propose a new face recognition system for intelligent TVs in order to overcome the limitations associated with low resource set-top box and low cost web-cameras. We implement the face recognition system using a software algorithm that does not require special devices or cameras. Our research has the following four novelties: first, the candidate regions in a viewer's face are detected in an image captured by a camera connected to the STB via low processing background subtraction and face color filtering; second, the detected candidate regions of face are transmitted to a server that has high processing power in order to detect face regions accurately; third, in-plane rotations of the face regions are compensated based on similarities between the left and right half sub-regions of the face regions; fourth, various poses of the viewer's face region are identified using five templates obtained during the initial user registration stage and multi-level local binary pattern matching. Experimental results indicate that the recall; precision; and genuine acceptance rate were about 95.7%; 96.2%; and 90.2%, respectively.

摘要

尽管智能电视很普及,但由于智能电视成本高昂,许多消费者仍继续使用配备辅助机顶盒(STB)的传统电视。然而,由于机顶盒的处理能力相当低,因此在机顶盒中能够实现的智能电视功能非常有限。因此,尽管针对智能电视已经开展了许多此类研究,但关于配备辅助机顶盒的传统电视的人脸识别研究却少之又少。在摄像头传感器方面,先前的人脸识别系统使用高分辨率摄像头、配备高倍变焦镜头的摄像头或带有平移和倾斜装置的摄像系统,这些系统可用于从不同位置进行人脸识别。然而,由于尺寸和成本方面的限制,这些摄像头和设备无法用于智能电视环境,只能使用小型、低成本的网络摄像头。由于图像的分辨率和质量水平有限,导致人脸识别性能下降。因此,我们提出了一种用于智能电视的新的人脸识别系统,以克服与低资源机顶盒和低成本网络摄像头相关的限制。我们使用一种不需要特殊设备或摄像头的软件算法来实现人脸识别系统。我们的研究有以下四个新颖之处:第一,通过低处理背景减法和面部颜色过滤,在连接到机顶盒的摄像头捕获的图像中检测观看者面部的候选区域;第二,将检测到的面部候选区域传输到具有高处理能力的服务器,以便准确检测面部区域;第三,基于面部区域左右半子区域之间的相似性,对面部区域的平面内旋转进行补偿;第四,使用在初始用户注册阶段获得的五个模板和多级局部二值模式匹配来识别观看者面部区域的各种姿势。实验结果表明,召回率、精确率和真实接受率分别约为95.7%、96.2%和90.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e50/4279559/6932e083f342/sensors-14-21726f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验